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xi

forEword

In putting together this book, we stand on the shoulders of others. The extensive bibliog-

raphy presented here spans centuries, and the resulting body of literature is based on the 

work of researchers who dedicated their minds to a deeper understanding of chameleons. 

We have taken pieces of this great puzzle and have made a start at constructing the whole 

picture, but there are many glaring gaps. In some respects, it seems there are too many 

pieces missing and the emerging picture is only a hazy nebula of unclear, scattered, and 

fragmented bits. But the excitement that comes with the challenge of scientific thought, 

of asking the questions “why” and “how,” is what compels us to keep looking for the miss-

ing pieces. For chameleons, the many missing pieces are the why and how of their remark-

able evolutionary radiation, and we must keep questioning, even if we never complete the 

puzzle. 

Although this book is built on the works of others, putting together this volume has 

been a group effort of the authors, all of whom enthusiastically came to the party. Each 

author brought their own expertise, and together we have made something more than any 

one of us could have done alone. It has been an extraordinary experience working with this 

team. As editors, we expected to be herding cats, but on the contrary, the process was sur-

prisingly smooth. Of course, each of the chapters was reviewed by our peers, all of whom 

invariably provided positive and constructive criticism on the content. It is surprising how 

many things we missed initially, and we owe much to our colleagues for taking time to 

review and comment on these chapters: Salvidor Bailon, Bill Branch, Angus Carpenter, 

Jack Conrad, Frank Glaw, Rob James, Charles Klaver, Lance McBrayer, John Poynton, Phil 

Stark, Andrew Turner, James Vonesh, Bieke Vanhooydonck, and Martin Whiting. We are 

grateful to several friends and colleagues who permitted complimentary use of their photos, 

including Bill Branch, Marius Burger, Tania Fouche, Adnan Moussalli, Devi Stuart-Fox, 

and Michele Menegon. We also owe much to Chuck Crumly for eagerly taking on the initial 

responsibility of producing this book, as well as the National Research Foundation of South 

Africa and  Centre National de la Recherche Scientifique and Groupement de Recherche 
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xii    foreword 

International for providing the funds that allowed the editors of this volume to collaborate 

and to aspire. The follow-up production team at UC Press (Lynn Meinhardt, Ruth Weinberg, 

Kate Hoffman, Blake Edgar, and Deepti Agarwal) were excellent in providing advice and 

assistance throughout the process. In all, this has been a brilliant experience, despite initial 

reservations in taking on such a big project. It’s clear that the ease of putting this together 

was due to an outstanding team of authors, all of whom are passionate about their subject 

and have not forgotten how to ask “why.”
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7

Two

Chameleon Anatomy 
Christopher V. Anderson and timothy e. highAm

The family Chamaeleonidae is a distinctive clade of squamate reptiles with a pleth-

ora of unusual structural adaptations. Chameleons exhibit numerous distinctive features, 

including a laterally compressed body, forcep-like feet with toes grouped in opposing bun-

dles, prehensile tail, enlarged casque, independently rotating eyes, and long tongue capable 

of being projected from the mouth. While chameleons are unique animals, they are also 

extremely diverse, with species spanning an approximate 20-fold range in adult total length 

and a 2000-fold range in body mass. Moreover, chameleons exhibit an extensive range of 

ornamentation. In addition, chameleons live over incredible ranges of habitats and demon-

strate an abundance of variation in their behavior and ecology (Chapters 5 and 6), features 

of which are often predicated on anatomical specializations. 

As a result of their unique nature, people have been interested in the biology of chame-

leons for centuries. In order to understand many aspects of chameleon biology, however, 

understanding the associated morphological underpinnings can be of vital importance. 

Here we summarize what is known about the anatomy of chameleons, emphasizing the dif-

ferences between chameleons and other reptiles and the differences among chameleons. 

2.1 musCuloskeletAl morphology

Axial

Cranial
The lateral compression of the chameleon in conjunction with their enlarged eyes and the 

formation of an enlarged casque have strong influences on the structure of the chameleon 

skull and the distribution and orientation of various cranial muscles. The extent to which 
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8    Chameleon Anatomy

these characteristics are developed, however, is also variable within the family, and thus 

examination of the anatomy of the skull and its musculature is not only of interest relative 

to other lizard groups, but also within the chameleons.

Skull and Teeth The extensive studies of the chameleon skull have included discus-

sion and examination of the structure of the skull in Archaius (Hillenius, 1988; Rieppel and 

Crumly, 1997), Bradypodion (Fig. 2.1c,d,f) (Parker, 1881; Methuen and Hewitt, 1914; Brock, 

1941; Engelbrecht, 1951; Rieppel, 1981; Hillenius, 1988), Brookesia (Fig. 2.1a,b) (Sieben-

rock, 1893; Methuen and Hewitt, 1914; Rieppel 1987; Rieppel and Crumly, 1997), Calumma 

(Methuen and Hewitt, 1914; Hillenius, 1988; Rieppel and Crumly, 1997), Chamaeleo 

(Parker, 1881; Siebenrock, 1893; Methuen and Hewitt, 1914; Prasad, 1954; Rieppel, 1987; 

Hillenius, 1988), Furcifer (Methuen and Hewitt, 1914; Hillenius, 1988; Rieppel and Crumly, 

1997), Kinyongia (Hillenius, 1988), Rhampholeon (Werner, 1902b; Methuen and Hewitt, 

1914; Frank, 1951; Rieppel, 1987; Hillenius, 1988), Rieppeleon (Rieppel, 1987; Hillenius, 

1988), and Trioceros (Fig. 2.1e) (Rieppel, 1981, 1987, 1993; Hillenius, 1988). These studies 

have amassed a list of variations between the skulls of different genera and developmental 

stages. However, they have also resulted in varying interpretations of the skull bones, par-

ticularly of the temporal region. Here we summarize the morphology of the adult skull in 

chameleons following the terminology and interpretations of Rieppel (1981). 

The premaxilla of chameleons is unpaired (fused) and lies medially between the maxillae 

(Fig. 2.1b,d) (Parker, 1881; Siebenrock, 1893; Werner, 1902b; Brock, 1941; Engelbrecht, 1951; 

Frank, 1951; Rieppel, 1981, 1987). The premaxilla in Brookesia (Siebenrock, 1893), Chamae

leo (Siebenrock, 1893), Rieppeleon (Rieppel; 1987), and Rhampholeon (Werner, 1902b; Frank, 

1951) bear two vestigial teeth, whereas the premaxillae in Trioceros do not bear teeth (Rieppel, 

1981). Engelbrecht (1951) reports that Bradypodion pumilum also lack premaxillary teeth. 

Rieppel (1981), on the other hand, observed indications of two vestigial teeth fused with 

the premaxilla, noting, however, that histological investigation is required to verify whether 

these are true teeth or paired bony projections on the transverse process of the premaxilla. 

Ventrally, the vomerine (palatal) process of the premaxilla is reduced (Fig. 2.1f) 

(Romer, 1956), extending only a short distance posteriorly, and in Bradypodion (Fig. 2.1f) 

(Engelbrecht, 1951; Frank, 1951; Rieppel, 1981), it does not contact the vomer, as the palatal 

process of the maxillae meets behind the premaxilla. The maxillae do not meet behind the 

premaxilla in Brookesia (Siebenrock, 1893; Rieppel and Crumly, 1997), however. Typically, 

the vomers are fused (unpaired) in chameleons (Frank, 1951; Rieppel, 1981); however, in 

Bradypodion pumilum, the vomers are paired for most of their length and fused only ante-

riorly where they join with the maxillae (Engelbrecht, 1951; Rieppel, 1981). In Archaius, the 

vomer is paired (Rieppel and Crumly, 1997). At the posterior end, the vomer joins the pala-

tines (Fig. 2.1f) (Engelbrecht, 1951; Rieppel, 1981). The palatines extend posteriorly and flare 

laterally to join the maxillaries (Fig. 2.1f) (Werner, 1902b; Engelbrecht, 1951; Rieppel, 1981).

Dorsally, the nasal process of the premaxilla extends posteriorly and fully separates 

the maxillae in most species (Fig. 2.1b,d) (Werner, 1902b; Engelbrecht, 1951; Frank, 1951; 
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Figure 2.1. The skull of Brookesia superciliaris (a, b), Bradypodion pumilum 
(c, d, f ), and Trioceros melleri (e) in lateral (a, c, e), dorsal (b, d), and ventral (f) views.  
(a, b) redrawn from Rieppel (1987) and (c, d, e, f) from Rieppel (1981).

lAbels: ang 5 angular; ar 5 articular; bo 5 basioccipital; bs 5 basisphenoid; 
c 5 coronoid; d 5 dentary; ec 5 ectopterygoid; f 5 frontal; j 5 jugal; m 5 maxilla; 
n 5 nasal; p 5 parietal; pl 5 palatine; pm 5 premaxilla; po 5 prootic; pof 5 postorbi-
tofrontal; pf 5 prefrontal; prfo 5 prefrontal fontanelle; pt 5 pterygoid; q 5 quadrate; 
sang 5 surangular; so 5 supraoccipital; sq 5 squamosal; st 5 supratemporal; 
v 5 vomer. 
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10    Chameleon Anatomy

Rieppel, 1981, 1987; Rieppel and Crumly, 1997). In Bradypodion, Brookesia, and Chamaeleo, 

the posterior edge of the nasal process of the premaxilla meets the fused nasals (Fig. 2.1b,d) 

(Seibenrock, 1893; Camp, 1923; Parker, 1942; Engelbrecht, 1951; Romer, 1956; Rieppel, 

1981, 1987). However, the nasal process of the premaxilla separates the nasals and meets 

an anterior process of the frontal in Rhampholeon and Rieppeleon (Werner, 1902b; Parker, 

1942; Frank, 1951, Rieppel, 1981, 1987). The nasals are paired and variably separated from 

the frontals by the premaxilla in Calumma and Furcifer (Rieppel and Crumly, 1997). 

In Brookesia, the nasals circumscribe the dorsal margin of the nasal aperture (Fig. 2.1a,b) 

(Siebenrock, 1893; Engelbrecht, 1951; Romer, 1956; Rieppel, 1981). In Bradypodion (Fig. 2.1c,d) 

(Brock, 1941; Engelbrecht, 1951; Rieppel, 1981), Chamaeleo (Parker, 1881), and Trioceros 

(Fig. 2.1e) (Rieppel, 1981), the nasals do not participate in circumscribing the nasal aper-

ture. The nasal aperture is bound by the maxillae on the anterior, ventral, and posterior 

edges (Siebenrock, 1893; Engelbrecht, 1951; Rieppel, 1981) and in Bradypodion, Chamaeleo, 

Rieppeleon, and Trioceros, the dorsal margin is bound by an anterior projection of the prefron-

tal lying lateral to the nasals (Fig. 2.1c–e) (Parker, 1881; Methuen and Hewitt, 1914; Engel-

brecht, 1951; Rieppel, 1981, 1987). In Bradypodion and Chamaeleo, a prefrontal fontanelle is 

bound by the nasal, prefrontal, and frontal (Fig. 2.1d) (Parker, 1881; Engelbrecht, 1951; Riep-

pel, 1981). The prefrontal fontanelle is bound by the prefrontal, nasal, and maxilla in Trioceros 

(Fig. 2.1e) (Rieppel, 1981). In Rhampholeon, however, the prefrontal fontanelles are continu-

ous with the nasal aperture and combined they are bound by the maxilla, prefrontal, nasal, 

frontal, and in some cases, the premaxilla (Werner, 1902b; Frank, 1951; Rieppel, 1981, 1987). 

The prefrontal circumscribes the anterodorsal margin of the orbit in Bradypodion 

(Fig. 2.1c) (Parker, 1881; Engelbrecht, 1951; Rieppel, 1981), Brookesia (Fig. 2.1a) (Siebenrock, 

1893; Romer, 1956; Rieppel, 1987), Chamaeleo (Parker, 1881), Rhampholeon (Werner, 1902b; 

Frank, 1951), Rieppeleon (Rieppel, 1987), and Trioceros (Fig. 2.1e) (Rieppel, 1981). The lac-

rimal is absent in Bradypodion (Brock, 1941; Engelbrecht, 1951; Rieppel, 1981), Brookesia 

(Siebenrock, 1893; Rieppel, 1987), Calumma (Methuen and Hewitt, 1913), Rhampholeon 

(Frank, 1951), and Rieppeleon (Rieppel, 1987), and the prefrontal joins the maxillae at the 

anterior edge of the orbit, allowing them to circumscribe the anteroventral margin of the 

orbit in these genera. In Chamaeleo (Parker, 1881; Camp, 1923) and Trioceros (Fig. 2.1e) 

(Rieppel, 1981), however, the lacrimal is present and joins the prefrontal at the anterior edge 

of the orbit, excluding the maxillae from involvement in circumscribing the orbit. Methuen 

and Hewitt (1914) note that the lacrimal is absent in Furcifer lateralis, whereas Rieppel 

and Crumly (1997) note that the lacrimal is usually observed in most Furcifer examined,  

including F. lateralis and with the exception of in F. oustaleti. The jugal joins with the lacri-

mal in Chamaeleo (Parker, 1881) and Trioceros (Fig. 2.1e) (Rieppel, 1981), and with the max-

illa in Bradypodion (Fig. 2.1c) (Brock, 1941; Engelbrecht, 1951; Rieppel, 1981), Brookesia  

(Fig. 2.1a) (Siebenrock, 1893; Romer, 1956; Rieppel, 1987), Calumma (Methuen and Hewitt, 

1914), Furcifer (Methuen and Hewitt, 1914), Rhampholeon (Werner, 1902b; Frank, 1951), and 

Rieppeleon (Rieppel, 1987); in both cases, they circumscribe the ventral and posteroventral 

edge of the orbit. 
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Chameleon Anatomy    11

The frontal is fused and, when present, bears the pineal foramen (Romer, 1956; Rieppel, 

1981). In Archaius (Rieppel and Crumly, 1997), Bradypodion (Fig. 2.1c,d) (Parker, 1881; 

Methuen and Hewitt, 1914; Engelbrecht, 1951; Rieppel, 1981), Brookesia (Fig. 2.1a,b) (Sieben-

rock, 1893; Romer, 1956; Rieppel, 1987), Calumma species other than C. brevicorne (Methuen 

and Hewitt, 1914; Rieppel and Crumly, 1997), Furcifer bifidus (Rieppel and Crumly, 1997), 

Furcifer campani (Rieppel and Crumly, 1997), and Rhampholeon (Werner, 1902b; Frank, 

1951), the frontal circumscribes the dorsal margin of the orbit and joins with the prefron-

tal anteriorly and the postorbitofrontal posteriorly. In Calumma brevicorne (Methuen and 

Hewitt, 1914), Chamaeleo (Parker, 1881), Furcifer species other than F. bifidus and F. campani 

(Methuen and Hewitt, 1914; Rieppel and Crumly, 1997), and Trioceros (Fig. 2.1e) (Rieppel, 

1981, 1993); however, the frontal is excluded from involvement in circumscribing the orbit 

by contact of the prefrontal with the postorbitofrontal. The postor bitofrontal joins the jugal 

at the posterior margin of the orbit (Fig. 2.1a,c,e) (Parker, 1881; Engelbrecht, 1951; Frank, 

1951; Rieppel, 1981) and extends deep to meet the ectopterygoid (Rieppel, 1981).

In Chamaeleo (Parker, 1881), Furcifer lateralis (Methuen and Hewitt, 1914; Rieppel and 

Crumly, 1997), F. pardalis (Rieppel and Crumly, 1997), and Trioceros (Fig. 2.1e) (Rieppel, 

1981), the dorsal tip of the jugal contacts the squamosal to form the upper temporal arch, 

with a posterior projection of the postorbitofrontal extending dorsal to the squamosal. In 

Calumma species other than C. brevicorne (Methuen and Hewitt, 1914; Rieppel and Crumly, 

1997), Bradypodion (Fig. 2.1c) (Parker, 1881; Rieppel, 1981), Brookesia (Fig. 2.1a) (Siebenrock, 

1893; Romer, 1856; Rieppel, 1987), F. bifidus (Rieppel and Crumly, 1997), Rhampholeon 

(Werner, 1902b; Frank, 1951), and Rieppeleon (Rieppel, 1987), the jugal and squamosal do 

not connect and the postorbitofrontal bridges the gap between them. Methuen and Hewitt 

(1914) note that the jugal and squamosal come into contact in Calumma brevicorne and C. 

nasuta, whereas Rieppel (1997) notes that the jugal may closely approach the squamosal in 

C. nasuta but does not touch it. A fontanelle in C. brevicorne may influence the possibility 

of contact between the jugal and squamosal. Further, Rieppel and Crumly (1997) note that 

contact between the jugal and squamosal is variable in F. oustaleti and F. verrucosus.

In Archaius (Hillenius, 1988), Calumma (Hillenius, 1988), Chamaeleo (Parker, 1881; 

Methuen and Hewitt, 1914; Hillenius, 1988), Furcifer (Hillenius, 1988), Kinyongia 

(Hillenius, 1988), Rhampholeon (Werner, 1902b; Frank, 1951; Rieppel, 1987), Rieppeleon 

(Rieppel, 1987), and Trioceros (Fig. 2.1e) (Rieppel, 1981; Hillenius, 1988), the parietal 

narrows posteriorly to form a sagittal crest, the parietal crest, extending posterodorsally 

to form the casque and meeting the supraoccipital ventrally. This posterior narrowing 

is slower, forming a more trigonal shape, in Calumma and Rhampholeon (Hillenius, 

1988; Rieppel and Crumly, 1997), with some Calumma species having a broadening 

again posteriorly (Rieppel and Crumly, 1997). In Archaius (Rieppel and Crumly, 1997), 

Calumma (Hillenius, 1988), Chamaeleo (Parker, 1881; Methuen and Hewitt, 1914),  

Furcifer (Hillenius, 1988), Rhampholeon (Werner, 1902b; Frank, 1951; Rieppel, 1987), 

Rieppeleon brevicaudatus (Rieppel, 1987), and Trioceros (Fig. 2.1e) (Rieppel, 1981), a dorsal  

process of the squamosal meets the posterodorsal tip of the parietal crest, whereas in 
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12    Chameleon Anatomy

Rieppeleon brachyurus and Rieppeleon kerstenii, the dorsal process is reduced and no lon-

ger meets the parietal (Rieppel, 1981). In Bradypodion (Fig. 2.1d) (Parker, 1881; Methuen 

and Hewitt, 1914; Engelbrecht, 1951; Rieppel, 1981; Hillenius, 1988) and Brookesia 

(Fig. 2.1b) (Siebenrock, 1893; Rieppel, 1987), the parietal forms a tapered plate extend-

ing posterodorsally to form the casque. A sagittal crest is formed on the ventral surface 

of the parietal, which meets the supraoccipital (Fig. 2.1a,c,e) (Rieppel, 1981) and a lat-

eroventral processes extends off the posterolateral edge of the parietal to meet the dorsal 

process of the squamosal (Fig. 2.1a,c,e) (Parker, 1881; Methuen and Hewitt, 1914; Brock, 

1941; Engelbrecht, 1951; Rieppel, 1981, 1987). A small supratemporal lies medial to the 

squamosal, wedged between the otic capsule wall and the head of the quadrate and 

squamosal (Fig. 2.1c) (Brock, 1941; Engelbrecht, 1951; Rieppel, 1981). The supratemporal 

is absent in Rieppeleon (Rieppel, 1987).

The lateral head of the quadrate’s cephalic condyle articulates with the anterior surface 

of the squamosal’s posteroventral process (Fig. 2.1a,c,e) (Rieppel, 1981). The pterygoid joins 

posteriorly with the palatine, laterally with the ectopterygoid, and posteromedially with the 

basisphenoid (Fig. 2.1f) (Engelbrecht, 1951; Rieppel, 1981). The pterygoid extends postero-

laterally from the junction with the basisphenoid toward the quadrate, expanding into a 

wing-shaped structure in the process, but does not reach the quadrate, forming only a liga-

mentous connection with it (Fig. 2.1a,c,e,f) (Romer, 1956; Rieppel, 1981). The basisphenoid 

joins with the basioccipital at its posterior edge, and the occipital condyle is at the poste-

rior edge of the basioccipital (Fig. 2.1f) (Parker, 1881; Werner, 1902b; Rieppel, 1981). In 

Calumma, the occipital condyle can be formed by the exoccipital with only participation of 

the basioccipital (Rieppel, 1987). The occipital condyle articulates with the proatlas of the 

vertebral column (Hoffstetter and Gasc, 1969).

The anterodorsal edge of the squamosal, posterodorsal edge of the postorbitofrontal, and 

the ventrolateral edge of the parietal circumscribes the upper temporal fossa (Fig. 2.1a–e) 

(Parker, 1881; Werner, 1902b; Engelbrecht, 1951; Frank, 1951; Rieppel, 1981, 1987). The ante-

rior edge of the quadrate, ventral edge of the squamosal, posterior edge of the jugal, and 

in Chamaeleo and Trioceros, the posteroventral edge of the postorbitofrontal, circumscribe 

the posttemporal fossa (Fig. 2.1a–e) (Parker, 1881; Siebenrock, 1893; Werner, 1902b; Engel-

brecht, 1951; Frank, 1951; Rieppel, 1981, 1987).

The dentaries are the sole tooth-bearing bones of the lower jaw; they join at a symphysis 

anteromedially (Fig. 2.1a,c,e) (Parker, 1881; Werner, 1902b; Engelbrecht, 1951; Frank, 1951; 

Rieppel, 1981, 1987). The coronoid attaches to the dentary medially with a dorsal coro-

noid process extending beyond the dorsal edge of the dentary (Fig. 2.1a,c,e) (Parker, 1881;  

Werner, 1902b; Engelbrecht, 1951; Frank, 1951; Rieppel, 1981, 1987). In Calumma, Chamaeleo,  

and Trioceros, the tooth row extends posteriorly beyond the anterior edge of the coronoid 

process (Fig. 2.1a) (Rieppel and Crumly, 1997). The angular attaches to the ventromedial 

aspect of the dentary (Fig. 2.1a,e) (Parker, 1881; Engelbrecht, 1951; Frank, 1951; Rieppel, 

1981, 1987). The surangular joins to the posterior aspect of the coronoid and medial 

aspect of the dentary (Fig. 2.1a,c,e) (Parker, 1881; Engelbrecht, 1951; Rieppel, 1981, 1987). 
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The articular joins at the posterior edge of the surangular (Fig. 2.1c,e) (Parker, 1881; Engel-

brecht, 1951; Frank, 1951; Rieppel, 1981, 1987). The retroarticular process in chameleons is 

reduced (Romer, 1956). 

Chameleons, as do Agamidae and Leiolepididae, possess an acrodont dentition (Camp, 

1923; Romer, 1956; Schwenk, 2000). Acrodont teeth are ankylosed to the apical surface of 

the upper and lower jaw, are added posteriorly to the tooth row during growth, and are worn 

throughout life and not replaced (Schwenk, 2000). Because teeth are not replaced, the sta-

bility of tooth position allows for strong occlusion patterns (Camp, 1923; Schwenk, 2000).

Cranial Musculature The musculature of the skull can be divided into a few broad com-

plexes, the jaw abductor muscles, and the complex jaw adductor musculature, which is very 

well developed in chameleons, and finally the constrictor dorsalis musculature. Muscles of 

the throat, buccal cavity and hyobranchial apparatus are presented in the “Hyobranchial” sec-

tion below and those of the eye in the section titled “Eye,” which focuses on the eye as a whole. 

JAw AbduCtor musCulAture The Musculus (M.) depressor mandibulae complex in 

chameleons has not been described in detail (Haas, 1973). It is noted, however, to consist 

of an internus and externus division (Engelbrecht, 1951). Combined, it originates on the 

ascending process of the squamosal (Meyers and Clarke, 1998), through the posterior sur-

face of the lateral ridge on the quadrate (Frank, 1951; Meyers and Clarke, 1998), and inserts 

into the posterior end of the mandible (Mivart, 1870; Meyers and Clarke, 1998) on the artic-

ular bone (Meyers and Clarke, 1998). 

In some species, however, some of the posterior superficial fibers, called the M. depres-

sor mandibulae pars auricularis, insert onto the lateral surface of the occipital lobes (Mey-

ers and Clarke, 1998). The M. depressor mandibulae pars auricularis function to abduct the 

occipital lobes during display, which are then passively adducted by recoil of the skin and 

connective tissue on the lobes’ medial surface (Meyers and Clarke, 1998). Utilization of a 

portion of the M. depressor mandibulae for this function, however, also results in move-

ment of the occipital lobes during feeding (C.V. Anderson, personal observation).

JAw AdduCtor musCulAture The quadratomaxillary ligament (the zygomatic liga-

ment of Mivart, 1870, and Ogilvie, 1966, and the ligamentum jugomandibulare of Mey-

ers and Clarke, 1998) lies beneath the skin on the side of the head, posterior to the corner 

of the mouth, and spans between the bones along the posteroventral margin of the orbit 

and the ventral end of the suspensorium (Mivart, 1870; Poglayen-Neuwall, 1954; Ogilvie, 

1966; Rieppel, 1981; Meyers and Clarke, 1998). Deep to this ligament lies the rictal plate 

(Poglayen-Neuwall, 1954), which serves as a site of muscle attachment for some of the jaw 

adductor muscles (Schwenk, 2000). Finally, the jaw adductor tendon, called the “bodenapo-

neurosis” or “basal aponeurosis,” which is a large aponeurotic plate attached to the lower 

jaw, spans between the lower jaw and some of the jaw adductor muscles in multiple sheets 

or septa (Poglayen-Neuwall, 1954; Rieppel, 1981, 1987). The lateral septum of the bodenapo-

neurosis is a narrow dorsal projection that extends dorsally from the coronoid process  

(Rieppel, 1981, 1987). The posterior sheet of the bodenaponeurosis extends dorsally from 
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the posterior to the coronoid process (Rieppel, 1981). The anterior sheet of the bodenapo-

neurosis is narrow and fan-shaped; it also extends dorsally well into the upper temporal 

opening from the coronoid process (Rieppel, 1981). 

The most superficial of the jaw adductor muscles is the M. levator anguli oris, which 

consists of an anterior and a posterior division (Rieppel, 1981, 1987). These divisions are 

weakly separated in some taxa (e.g., Bradypodion pumilum [Rieppel, 1981]; Brookesia super

ciliaris [Rieppel, 1987]), whereas in others they are more distinctly separated (e.g., Trioceros 

melleri [Rieppel, 1981]). The M. levator anguli oris anterior originates on the upper tempo-

ral arch and the M. levator anguli oris posterior originates on the quadrate (Rieppel, 1981, 

1987), with both inserting on the rictal plate at the corner of the mouth (Schwenk, 2000). 

The M. tensor anguli oris is absent in chameleons (Rieppel, 1981).

Beneath the M. levator anguli oris and rictal plate is the M. adductor mandibulae exter-

nus superficialis (Rieppel, 1981). It originates on the medial surface of the upper temporal 

arch and inserts on the dorsolateral surface of the lower jaw (Rieppel, 1981). Superficially, 

the fibers of the M. adductor mandibulae externus superficialis extend dorsal to posterodor-

sally but the deeper fibers transition to more oblique angles approaching the more sharply 

posterodorsal angle of the fibers of the M. adductor mandibulae externus medialis, which 

lies beneath it (Rieppel, 1981).

The M. adductor mandibulae externus medialis lies deep to the M. adductor mandibulae 

externus superficialis and originates and inserts broadly (Rieppel, 1981). The anteriormost 

fibers originate on the dorsal and dorsoventral edge of the upper temporal fossa on the parietal 

and squamosal bones, and insert on the dorsal part of the lateral septum of the bodenaponeu-

rosis (Rieppel, 1981, 1987). More medial fibers originate on the medial surface of the posterior 

side of the upper temporal arch on the squamosal bone and from the cephalic condyle of the 

quadrate and then insert on the posteroventral portion of the lateral septum of the bodenapo-

neurosis (Rieppel, 1981, 1987). The posteriormost fibers originate on the lateral surface of the 

quadrate and insert on the posterior sheet of the bodenaponeurosis (Rieppel, 1981) or on the 

surangular of the lower jaw (Rieppel, 1987). Some deep fibers of the M. adductor mandibulae 

externus medialis originate on the parietal and ascending process of the squamosal and insert 

on the lateral surface of the anterior sheet of the bodenaponeurosis (Rieppel, 1981). 

The M. adductor mandibulae externus profundus is divided into three heads, or por-

tions, and overall is enlarged because of the formation of the casque (Rieppel, 1981). The 

posteroventralmost portion, the so-called 3a-head, corresponds to fibers originating on the 

anteromedial surface of the quadrate and insert on the dorsomedial surface of the jaw, deep 

to the posterior sheet of the bodenaponeurosis, but in chameleons cannot be clearly defined 

(Rieppel, 1981). The pattern of origin and insertion of the anterodorsalmost portion, the so-

called 3b-head, varies from one casque structure to another. In Trioceros, which have a strong 

sagittal crest on the parietal bone, the 3b-head originates on the sagittal crest deep to the 

M. adductor mandibulae externus medialis and inserts on the medial aspect of the anterior 

sheet of the bodenaponeurosis (Rieppel, 1981). In Bradypodion, which have a broad parietal 

bone with a ventrolateral process, the 3b-head originates on the lower surface of the parietal 
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and on to the ventrolateral process and inserts on the medial surface of the anterior sheet of 

the bodenaponeurosis (Rieppel, 1981). In both cases, the origin extends anteriorly over the 

insertion of the M. pseudotemporalis superficialis (Rieppel, 1981) and in some cases onto 

the posterior edge of the postorbital, where it meets with the parietal (Engelbrecht, 1951). 

Between the 3a- and 3b-heads lies the so-called 3c-head of the M. adductor mandibulae exter-

nus profundus (Rieppel, 1981). The 3c-head originates on the lateral and ventral aspect of the 

prootic (Rieppel, 1981, 1987), the covering of the surface of the otic capsule wall (Brock, 1941; 

Engelbrecht, 1951), and the anterior and anterodorsal aspect of the paroccipital process of the 

back of the skull (Rieppel, 1981). It inserts on the medial surface on the basal portion of the 

bodenaponeurosis and on the medial surface of the coronoid process itself (Rieppel, 1981). 

The M. adductor posterior lies deep to the M. adductor mandibulae externus profundus  

and is rather large in chameleons (Rieppel, 1981). It originates on the medial edge of the 

quadrate; on the membrane between the quadrate, prootic, and pterygoid; and on the  

dorsolateral part of the pterygoid wing (Haas, 1973; Rieppel, 1981). The M. adductor posterior 

inserts on the medial aspect of the surangular of the lower jaw (Rieppel, 1981).

Although regarded by some as not differentiated (Brock, 1941), the M. pseudotempo-

ralis consists of a superficialis and profundus division and is also deep to the M. adductor 

mandibulae externus profundus (Haas, 1973; Rieppel, 1981, 1987). The M. pseudotempo-

ralis superficialis originates on the anteromedial aspect of the casque and inserts on the 

dorsal portion of the tendinous raphe extending dorsally from the coronoid process deep 

to the bodenaponeurosis (Rieppel, 1981). The M. pseudotemporalis profundus originates 

on the anterior edge of the prootic and on the membranous sidewall of the braincase ante-

rior to it (Rieppel, 1981). Anterior fibers of the M. pseudotemporalis profundus insert 

on the posterior base of the tendon, whereas the deeper and more posterior fibers of the 

M. pseudotemporalis superficialis insert on the medial aspect of the lower jaw direction just 

posteroventral to the coronoid process (Rieppel, 1981, 1987). 

The M. pterygoideus consists of a superficial (ventral) and deep (dorsal) head (Riep-

pel, 1981). The superficial head originates on the ventral edge and ventromedial aspect of 

the pterygoid wing and inserts on the lower edge and ventrolateral surface of the lower jaw 

(Rieppel, 1981). The deep head originates on the lateral aspect of the posteroventral portion 

of the pterygoid wing and inserts on the medial surface of the lower jaw, just ventral and 

anteroventral to the jaw joint (Rieppel, 1981). 

ConstriCtor dorsAlis musCulAture The muscles of the constrictor internus dorsalis 

complex, which are typically involved in cranial kinesis (Schwenk, 2000), are highly reduced 

in chameleons (Brock, 1941; Engelbrecht, 1951; Frank, 1951; Haas, 1973; Rieppel, 1981). 

This is in large part a result of the akinetic structure of the chameleon skull (Haas, 1973). 

Whereas the M. levator pterygoidei has been reported in young Chamaeleo (Lakjer, 1926; 

Rieppel, 1981), other research has failed to identify it (Lubosch, 1933; Brock, 1941; Engel-

brecht, 1951; Frank, 1951; Poglayen-Neuwall, 1954; Rieppel, 1981, 1987). 

The M. protractor pterygoidei is strongly developed in some taxa but only weekly devel-

oped in others (Frank, 1951; Haas, 1973; Rieppel, 1981, 1987). It originates on the basipterygoid 
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process (Frank, 1951; Poglayen-Neuwall, 1954; Haas, 1973; Rieppel, 1981, 1987) and inserts 

on the medial to dorsomedial aspect of the pterygoid wing (Haas, 1973; Rieppel, 1981, 1987). 

In Bradypodion, it is also noted to insert on the ligament connecting the pterygoid wing and 

the quadrate, thus acting as a quadrate protractor in these taxa (Rieppel, 1981).

The M. levator bulbi ventralis is also lacking in chameleons (Poglayen-Neuwall, 1954; 

Haas, 1973). The M. levator bulbi dorsalis, however, is present and originates on the prootic 

wing and inserts on the ventral portion of the eye (Poglayen-Neuwall, 1954; Haas, 1973). 

Hyobranchial
One of the more highly specialized features in chameleons is the tongue. In order to 

achieve ballistic tongue projection, the tongue apparatus has undergone a series of 

anatomical changes from their agamid-like ancestors. Interest in the tongue of chame-

leons has resulted in a wide range of studies on its structure and function over the years. 

These have subsequently resulted in a wide range of varying interpretations and names of 

the tongue’s structures, particularly muscular structures. These name synonyms and the 

names we’ve adopted are summarized in Table 2.1 and described in the following sections.

Tongue Skeleton The chameleon hyobranchial apparatus is comprised of a reduced 

basihyoid, an elongate lingual process, and two pairs of cornua (Fig. 2.2a,b) (Bell, 1989; 

Herrel et al., 2001b; Meyers et al., 2002). The hyobranchial apparatus is suspended in the 

region of the neck and throat by muscle connection between it and the lower jaw, sternum, 

and pectoral girdle (Zoond, 1933; Wainwright et al., 1991). The elongate lingual process lies 

medially and extends anteriorly into the buccal cavity (Houston, 1828). 

The elongate lingual process, called the “entoglossal process,” is parallel-sided over most 

of its length, with a tapered anterior tip (Fig. 2.2a,b) (Gnanamuthu, 1930; van Leeuwen, 

1997; Wainwright and Bennett, 1992b; Herrel et al., 2001b, 2009; de Groot and van 

Leeuwen, 2004). The degree of tapering reported in the literature varies from the anterior 

10% (Wainwright and Bennett, 1992b) to 1 to 1.5% (Herrel et al., 2001b). Histological sec-

tions of the entoglossal process indicate that it is cartilaginous, with hyaline cartilage along 

its body and a thick layer of dense fibrocartilage near the tip (Herrel et al., 2001b). Some 

degree of calcification of the entoglossal process is evident, however, as the entoglossal pro-

cess on cleared and stained specimens stains for bone (Herrel et al., 2001b). 

The anterior pair of cornua consists of the ceratohyalia, which are shorter than the poste-

rior pair of cornua (Fig. 2.2a,b) (Gnanamuthu, 1930; Bell, 1989; Wainwright et al., 1991; Herrel 

et al., 2001b, 2009; Meyers et al., 2002) and are completely cartilaginous (Wainwright et al., 

1991; Herrel et al., 2001b; Meyers et al., 2002). Each ceratohyal is divided into two parts, with 

the proximal part being more robust and the distal part being more flexible (Herrel et al., 

2001b). The two parts of the ceratohyals articulate with a synovial joint and the proximal 

part articulates on the anterior dorsal side of the basihyoid with a U-shaped synovial joint 

(Herrel et al., 2001b). From the basihyoid, the ceratohyals extend anterodorsally when the 

tongue apparatus is in its rest position and viewed laterally (Houston, 1828; Bell, 1989;  
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tAble 2.1 Muscle Synonomies of Chameleon Hyobranchial Musculature

this review published synonyms sources

Musculi (Mm.) 
mandibulohyoideus 
medialisa, lateralis 
1b et lateralis 2c

Mm. geniohyoid “internal”a 
et “external”b,c

M. geniohyoida

M. ceratomandibularb,c

Mm. geniohyoideus medialisa 
et lateralisb,c

M. geniohyoideus

M. geniohyoideusa

M. genio-ceratoideusb,c

M. mandibulohyoideus

Mm. mandibulohyoideus 1b, 2a, 
et 3c

Mm. mandibulohyoideus 1c, 2a, 
et 3b

Houston, 1828; Dewevre, 1895

Mivart, 1870; Zoond, 1933
Mivart, 1870
Lubosch, 1932; Altevogt and 

Altevogt, 1954; Altevogt, 
1977; Wainwright et al., 1991; 
So et al., 1992

Brücke, 1852a; Wainwright and 
Bennett, 1992a

Kathariner, 1894; 
Germershausen, 1913

Kathariner, 1894; 
Germershausen, 1913

Meyers and Nishikawa, 2000; 
Herrel et al., 2009

Herrel et al., 2001b

Meyers et al., 2002

M. omohyoideus M. omohyoid
M. scapula-hyoidien
M. omohyoideus

Houston, 1828; Mivart, 1870
Dewevre, 1895
Kathariner, 1894; 

Germershausen, 1913; 
Lubosch, 1932; Herrel et al., 
2001b; Meyers et al., 2002

Mm. sternohyoideus 
superficialisa et 
profundusb

M. sternohyoideusa

M. sternoceratoideusb

M. sternothyroideusb

Houston, 1828; Mivart, 
1870; Kathariner, 1894; 
Germershausen, 1913; 
Gnanamuthu, 1930, 1937; 
Zoond, 1933; Altevogt and 
Altevogt, 1954; Altevogt, 1977; 
Wainwright et al., 1991; So 
et al., 1992; Wainwright and 
Bennett, 1992a; Meyers et al., 
2000; Herrel et al., 2001b, 2009

Houston, 1828; Kathariner, 1894; 
Germershausen, 1913

Mivart, 1870; Gnanamuthu, 
1930, 1937; Zoond, 1933; 
Wainwright et al., 1991; So 
et al., 1992; Wainwright and 
Bennett, 1992a; Meyers et al., 
2000; Herrel et al., 2001b

(Continued)
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this review published synonyms sources

Mm. sterno-hyoiden “anterieur”a 
et “postero-lateral”b

M. sternohyoidei
Mm. sternohyoideus 

superficialisa et profundusb

Dewevre, 1895

Lubosch, 1932
Meyers et al., 2002

Mm. genioglossus 
anteriora et 
posteriorb

M. genioglossus

M. génio-périglosse
Mm. genioglossus anteriora 

et posteriorb

Mm. genioglossus medialisb 
et lateralisa

Mivart, 1870; Kathariner, 1894; 
Gnanamuthu, 1930; 1937; 
Bell, 1989

Dewevre, 1895
Herrel et al., 2001b

Meyers et al., 2002

M. constrictor colli M. constrictor colli Herrel et al., 2001b

Mm. intermandibularis 
anteriora et 
posteriorb

M. mylohyoideus

Mm. mylohyoideus anteriora 
and posteriorb

M. intermaxillarisa

M. mylo-hyoideus posteriorb

Mm. intermandibularis anteriora 
et posteriorb

Houston, 1828; Brücke, 
1852a; Dewevre, 1895; 
Gnanamuthu, 1930

Mivart, 1870; Kathariner, 1894

Germershausen, 1913
Germershausen, 1913
Herrel et al., 2001b; Meyers 

et al., 2002

M. branchiohyoideus M. ceratohyoideus

M. branchiohyoideus

Mivart, 1870; Gnanamuthu, 
1930

Herrel et al., 2001b

M. hyoglossus M. hyoglossus

M. glosso-hyoidiens
“glossohyal muscle”
“retractor muscle”
“hyoglossal muscle”

Houston, 1828; Brücke, 
1852a; Kathariner, 1894; 
Gnanamuthu, 1930, 1937; 
Lubosch, 1932; Zoond, 1933; 
Altevogt and Altevogt, 1954; 
Altevogt, 1977; Bell, 1989; 
So et al., 1992; Wainwright 
and Bennett, 1992a; Herrel 
et al., 2000, 2001a,b, 2002, 
2009; Meyers and Nishikawa, 
2000, 2002; de Groot and van 
Leeuwen, 2004

Dewevre, 1895
Gans, 1967
Wainwright et al., 1991
Wainwright and Bennett, 1992a
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this review published synonyms sources

M. accelerator linguae “Annular muscle”
“ring muscle”

“accelerator muscle”

M. accelerator

M. accelerator linguae

Houston, 1828
Gnanamuthu, 1930, 1937; Zoond, 

1933
Gans, 1967; Wainwright et al., 

1991; So et al., 1992; 
Wainwright and Bennett, 
1992a,b; van Leeuwen, 1997; 
Meyers et al., 2002; de Groot 
and van Leeuwen, 2004

Kathariner, 1894; Lubosch, 1932; 
Altevogt and Altevogt, 1954; 
Altevogt, 1977; Herrel et al., 
2000, 2001a,b, 2009; Meyers 
and Nishikawa, 2000

Brücke, 1852a; Kathariner, 1894; 
Sewertzoff, 1923; Altevogt 
and Altevogt, 1954; Altevogt, 
1977; Schwenk and Bell, 
1988; Bell, 1989

M. “retractor pouch” M. longitudinales linguae 
adductoris

M. hyoglossus superficialis
M. pouch retractor
M. “retractor pouch”

Brücke, 1852a; Gnanamuthu, 
1930, 1937; Zoond, 1933; Bell, 
1989

Kathariner, 1894
Herrel et al., 2000
Herrel et al., 2001b

M. longitudinalis 
linguae ventralis

M. submucosus
M. hyoglossus profundus
M. longitudinalis linguae 

extensoris
M. longitudinalis linguae 

ventralis

Brücke, 1852a
Kathariner, 1894
Gnanamuthu, 1930, 1937; 

Zoond, 1933; Bell, 1989
Herrel et al., 2001b

M. pulvinaris M. pulvinar 
“Ringmuskel für den Fangnapf”
M. pulvinaris

Brücke, 1852; Lubosch, 1932
Altevogt, 1977
Bell, 1989; Herrel et al., 2001b

Mm. transversalis 
linguae anteriora et 
posteriorb

M. lateralis linguae
M. transversalis linguaea 
M. lateralis linguaeb 
M. transversalis linguae externia

M. superficialis linguaeb 
Mm. transversalis linguae 

anteriora and posteriorb

Brücke, 1852a
Gnanamuthu, 1930, 1937
Gnanamuthu, 1930
Bell, 1989
Bell, 1989
Herrel et al., 2001b
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Herrel et al., 2001b). When viewed in a transverse plane, the ceratohyals form a U-shape. As 

the entoglossal process is pulled forward during tongue protrusion, the ceratohyals rotate 

and are pointed upward (Herrel et al., 2001b). In some species, the distal part of the cera-

tohyal has a flat triangular piece of cartilage attached to it (Gnanamuthu, 1930; Herrel et al., 2001b). 

The posterior pair of cornua is the ceratobranchials, which are ossified and longer 

than the ceratohyals (Fig. 2.2a,b) (Gnanamuthu, 1930; Bell, 1989; Herrel et al., 2001b; 

Meyers et al., 2002). The ceratobranchials articulate with the posterior side of the basihy-

oid with a saddle-shaped synovial joint (Herrel et al., 2001b; Meyers et al., 2002). At rest, 

the ceratobranchials extend anterodorsally (Gnanamuthu, 1930; Bell, 1989) to dorsally in a 

nearly perpendicular direction to the long axis of the hyobranchial apparatus when viewed 

laterally (Herrel et al., 2001b; Meyers et al., 2002). When viewed in a transverse plane, the 

ceratobranchials form a U-shape. During protrusion of the tongue, the ceratobranchials 

rotate and are folded backward (Wainwright et al., 1991; Herrel et al., 2009). 

Hyobranchial Musculature The hyobranchial apparatus is suspended in the throat 

by muscles that originate outside the hyobranchial apparatus and insert on the hyobranchial 

skeleton (Bell, 1989; Wainwright et al., 1991). These muscles serve to draw the hyobranchial 

apparatus forward and back during tongue protrusion and hyobranchial retraction (Gnana-

muthu, 1930; Bell, 1990; Herrel et al., 2009).

(a)

(d)(b)

(c)

CH

CH

CB

CB

CB

CB
TP

TP

HG

HG

ACC

ACC

ENT

ENT

ACT

ACT

BH

5mm 5mm

Figure 2.2. Skeletal and muscular components of the chameleon tongue apparatus. Lateral (a) 
and dorsal (b) views of the skeletal elements of the tongue of C. p. parsonii. Ventrolateral (c) and 
dorsolateral (d) views of the muscular elements of the tongue of T. johnstoni at rest. Anterior end 
of elements at left in (a), (b), and (d), and at right in (c). Scale bar at bottom left applies to (a) and 
(b), and that at bottom right to (c) and (d). Modified from Anderson et al. (2012).

lAbels: ACC 5 M. accelerator linguae; ACT 5 articulating cartilaginous tip; BH 5 basihyoid; CB 5 
ceratobranchial; CH 5 ceratohyal; ENT 5 entoglossal process; HG 5 M. hyoglossus; TP 5 tongue pad. 
Dotted lines between gray triangles in (c) and (d) indicate division between HG and ACC. Dotted line 
between white triangles in (d) indicate posterior limits of the TP. 
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The paired M. mandibulohyoideus consists of three distinct divisions (Gnanamuthu, 

1930; Herrel et al., 2001b). The M. mandibulohyoideus medialis originates near the symphy-

sis of the lower jaw via a short aponeurosis and inserts on the ventral surface of the basihyoid 

(Wainwright and Bennett, 1992a; Herrel et al., 2001b). The M. mandibulohyoideus lateralis 

1 originates lateral to the symphysis of the lower jaw and inserts on the tip of the ceratohyal 

(Herrel et al., 2001b). The M. mandibulohyoideus lateralis 2 originates on the jaw between 

the M. mandibulohyoideus medialis and M. mandibulohyoideus lateralis 1, is attached to the 

M. mandibulohyoideus lateralis 1 for most of the latter’s length, and inserts on the distal third 

of the ceratobranchial (Herrel et al., 2001b). Together, the M. mandibulohyoideus serves to draw 

the hyobranchial apparatus anteriorly during tongue protrusion and protraction and is active 

during prey transport (Brücke, 1852a; Dewevre, 1895; Gnanamuthu, 1930; Zoond, 1933; Wain-

wright et al., 1991; Wainwright and Bennett, 1992a; Meyers and Nishikawa, 2000). The two 

divisions of the M. mandibulohyoideus lateralis may also serve to facilitate articulation of the 

cornua with the basihyoid by drawing the tips of the cornua forward as the M. sternohyoideus 

draws the basihyoid back during hyobranchial retraction (Dewevre, 1895; Gnanamuthu, 1930). 

The paired M. omohyoideus originates on the anterior, ventral side of the scapula and 

inserts on the posterior side of the lateral aspect of the basihyoid (Mivart, 1870; Gnana-

muthu, 1930, 1937; Meyers et al., 2002). From the basihyoid, however, it extends dorsally to 

wrap around the M. sternothyroideus before returning ventrally and curving under the M. 

episternocleidomastoideus toward the scapula (Herrel et al., 2001b; Meyers et al., 2002). It 

serves to draw the basihyoid upward (Mivart, 1870; Gnanamuthu, 1930).

The paired M. sternohyoideus consists of a superficialis and a profundus division (Mey-

ers et al., 2002). The M. sternohyoideus superficialis originates on the posteroventral sur-

face of the xiphisternum (xiphoid process) and inserts on the ventral side of the basihyoid 

(Gnanamuthu, 1930; Herrel et al., 2001b; Meyers et al., 2002). It serves to draw the basi-

hyoid posteriorly during hyobranchial retraction (Gnanamuthu, 1930, 1937; Zoond, 1933;  

Wainwright and Bennett, 1992a). The M. sternohyoideus profundus consists of two divisions 

(Herrel et al., 2001b). The anterior division originates on the midbody connective-tissue  

band anterior to the xiphisternum and inserts on the posterior tip of the ceratobranchial 

(Herrel et al., 2001b). The posterior division also originates on the midbody connective-tis-

sue band but immediately anterior to the xiphisternum and inserts onto the posterior side 

of the dorsal half of the ceratobranchial (Herrel et al., 2001b). Together, they serve to draw 

the distal end of the ceratobranchials in a posteroventral direction during tongue protrusion 

(Gnanamuthu, 1930, 1937; Wainwright and Bennett, 1992a).

Within the throat and buccal cavity, support and movement of the hyobranchial appara-

tus is facilitated by intermandibular musculature (Gnanamuthu, 1930; Herrel et al., 2001b). 

These muscles originate on the skull and mandible and generally serve to elevate the throat 

and gular regions, and in doing so elevate the hyobranchial apparatus within the throat and 

buccal cavity (Gnanamuthu, 1930).

The paired M. genioglossus consists of an anterior and a posterior division (Herrel et al., 

2001b). They originate on the inner surface of the mandible and insert on the buccal-floor 
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epithelium (Gnanamuthu, 1930; Bell, 1989; Herrel et al., 2001b), with the anterior portion 

inserting via a tendon (Herrel et al., 2001b). The anterior division inserts at the level of the basi-

hyoid, whereas the posterior division inserts on an aponeurosis at the floor of the throat (Her-

rel et al., 2001b). The M. genioglossus forms a pouch around the tongue inside the mouth and 

when contracted form paddle-like lips on either side of the tongue (Gnanamuthu, 1930, 1937; 

Bell, 1989). 

The paired M. constrictor colli originates on the dorsal nuchal/cervical fascia and 

inserts on the midventral fascia (Herrel et al., 2001b; Meyers et al., 2002). From its origin, 

it extends ventrally and then posterior to the lower jaw and curves medially toward the mid-

ventral fascia (Herrel et al., 2001b). It serves to elevate the throat (Gnanamuthu, 1930).

The paired M. intermandibularis consists of two divisions, an anterior and a posterior one 

(Gnanamuthu, 1930; Herrel et al., 2001b), with the anterior division being further divided into 

a principalis and profundus sheet by some researchers (Gnanamuthu, 1930, 1937). They origi-

nate broadly along the inner surface of the mandible and lower jaw, with the posterior division 

originating via a short aponeurosis (Herrel et al., 2001b). The anterior division inserts on the 

midventral fascia, which is attached to the jaw symphysis, and the posterior division inserts 

on the midventral fascia via an aponeurosis (Herrel et al., 2001b; Meyers et al., 2002). The  

M. intermandibularis anterior principalis runs anteromedially toward its insertion, whereas 

the M. intermandibularis anterior profundus runs posteromedially toward its insertion 

(Gnanamuthu, 1930). Together they serve to elevate the floor of the mouth. 

Within the hyobranchial apparatus itself, the paired M. branchiohyoideus spans between 

the posterior edge of the distal third of the ceratohyal and the anterior side of the distal 

quarter of the ceratobranchial (Gnanamuthu, 1930; Herrel et al., 2001b). It enables move-

ment of the cornua with respect to each other, as the aforementioned muscles that insert on 

them modulated their position. 

The paired M. hyoglossus originates on the medial surface of the ceratobranchial along its 

entire length and inserts under the strong outer layer of connective tissue on the lateral aspect 

of the M. accelerator linguae at approximately a quarter of its length (Fig. 2.2c,d) (Herrel et al., 

2001b; Meyers et al., 2002). The muscle is bulky near its origin and quickly narrows as it runs 

ventrally to the proximal end of the ceratobranchial (Gnanamuthu, 1930; Bell, 1989; Herrel  

et al., 2001b). It then passes under the ceratohyal by its articulation with the basihyoid 

(Gnanamuthu, 1930; Bell, 1989; Herrel et al., 2001b). At rest, the M. hyoglossus is heav-

ily pleated around the posterior end of the entoglossal process until it reaches the posterior 

edge of the M. accelerator linguae (Fig. 2.2c,d) (Herrel et al., 2001b; Meyers et al., 2002). 

The M. hyoglossus is surrounded by a sheath of epimysium between the M. accelerator 

linguae and the base of the entoglossal process (Meyers et al., 2002). Fully elongated, the 

M. hyoglossus extends up to 600% of its resting length (Herrel et al., 2001a, 2002). This 

extreme shortening capability is the result of supercontracting muscle fibers with perfo-

rated Z discs, which allow filaments within each muscle sarcomere to extend through the 

Z discs and into adjacent sarcomeres (Rice, 1973; Bell, 1989; Schwenk, 2000; Herrel et al., 

2001a, 2002). The M. hyoglossus serves to retract the M. accelerator linguae back onto the 
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entoglossal process following tongue projection (Altevogt and Altevogt, 1954; Gans, 1967; 

Bell, 1989; Wainwright and Bennett, 1992a).

The M. accelerator linguae surrounds the entoglossal process at rest and is surrounded 

by an inner and outer tendinous connective-tissue sheath (Fig. 2.2c,d) (Gnanamuthu, 1930; 

Bell, 1989; Herrel et al., 2001b). The posterior three quarters form a muscular tube around 

the entoglossal process (Gnanamuthu, 1930; Bell, 1989; Herrel et al., 2001b), with muscle 

fibers extending radially between the inner and outer tendinous sheaths in a cross-helical fash-

ion (Gnanamuthu, 1930; Gans, 1967; Bell, 1989; van Leeuwen, 1997; Herrel et al., 2001b; de 

Groot and van Leeuwen, 2004). The anterior quarter of the M. accelerator linguae divides into a 

dorsal and a ventral projection (Gnanamuthu, 1930; Bell, 1989; Herrel et al., 2001b). The dorsal 

bundle extends to the posterior edge of the tongue pouch, whereas the ventral bundle extends 

all the way to the tip of the tongue (Herrel et al., 2001b). The dorsal bundle is continuous with 

the posterior three quarters of the M. accelerator linguae, with muscle fibers oriented perpen-

dicularly to the long axis of the hyobranchial apparatus (Herrel et al., 2001b). The ventral bundle 

has similarly oriented muscle fibers and is continuous with the posterior three quarters up to the 

approximate location where the dorsal bundle ends, at which point a vertical connective-tissue 

septum separates the remaining length of the ventral projection of the M. accelerator linguae 

(Herrel et al., 2001b). The M. accelerator linguae serves to push the tongue off the entoglossal 

process (Gans, 1967; Altevogt, 1977; Bell, 1989; Wainwright and Bennett, 1992a,b) and load 

elastic elements involved in tongue projection (de Groot and van Leeuwen, 2004).

The paired M. “retractor pouch” originates on the dorsolateral side of the M. accelera-

tor linguae on the posterior third of its length and inserts medially on the inner side of the 

membrana grandulosa of the tongue pad, which is invaginated at rest (Herrel et al., 2001b). 

It serves to draw the center of the tongue pad posteriorly during prey prehension (Herrel 

et al., 2000), thus invaginating the membrane grandulosa of the tongue pad. 

The paired M. longitudinalis linguae ventralis originates immediately posterior to the 

bifurcated tongue tip on the internal surface of the tongue pad and inserts on the lateral side 

of the anteroventral, noncircular portion of the M. accelerator linguae (Bell, 1989; Herrel 

et al., 2001b). Whereas some studies suggest that this muscle’s action involves extension 

of the tongue (Gnanamuthu, 1930), it appears clear that it is not an extensor (Herrel et al., 

2001b) but likely serves to draw the ventral aspect of the tongue pad back, possibly drawing 

the bifurcated tongue tip ventrally in the process.

The paired M. pulvinaris is restricted to the tongue pad, where it develops at its posterior 

end, extends anteriorly, and ends immediately anterior to the tongue pouch (Brücke, 1852a; 

Bell, 1989; Herrel et al., 2001b). 

The M. transversalis linguae consists of an anterior and a posterior division. The paired M. 

transversalis linguae anterior originates on the dorsal aspect of the anterior, noncircular portion 

of the M. accelerator linguae and inserts immediately anterior to the pouch on the inner surface 

of the tongue pad (Herrel et al., 2001b). The paired M. transversalis linguae posterior originates 

on the dorsolateral surface of the M. accelerator linguae on its posterior end and inserts poste-

rior to the pouch on the medial inner surface of the tongue pad (Herrel et al., 2001b). 
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Located between the entoglossal process and the tongue muscles that surround it is an 

assortment of connective tissue (Gnanamuthu, 1930; Zoond, 1933; Gans, 1967; Bell, 1989; 

Herrel et al., 2001b; de Groot and van Leeuwen, 2004) that is comprised of a series of nested 

intralingual sheaths (Gnanamuthu, 1930; Bell, 1989; de Groot and van Leeuwen, 2004). At 

the anterior tip of the entoglossal process, a short articulating cartilaginous projection, which 

is folded back on the entoglossal process at rest, is found (Herrel et al., 2001b). This articulat-

ing cartilaginous tip connects the layer of longitudinal collagen fibers surrounding the ento-

glossal process, the perichondrium, to the innermost intralingual collagen sheath between 

the entoglossal process and the M. accelerator linguae (de Groot and van Leeuwen, 2004). The 

innermost intralingual sheaths are longer than more peripheral sheaths, as the inner sheaths 

attach more proximally on the hyobranchial apparatus than the outer sheaths (de Groot and 

van Leeuwen, 2004). The innermost sheath is attached at its posterior end to the fascia of the 

M. hyoglossus, near the articulation of the entoglossal process and the certobranchials, and 

each subsequent sheath attaches slightly anterior to the previous sheath (de Groot and van 

Leeuwen, 2004). More peripheral sheaths eventually are connected to the inner fascia of the 

M. accelerator linguae (de Groot and van Leeuwen, 2004). The inner sheaths are connected to 

each other only via their attachment to the M. hyoglossus and are able to slide past each other in 

a telescoping fashion as the tongue extends (de Groot and van Leeuwen, 2004). In addition to 

their structural connection at their attachment, the more peripheral sheaths are also intercon-

nected by collagenous trabeculae (de Groot and van Leeuwen, 2004). The collagen fibers of the 

peripheral sheaths, which lie medial to the M. accelerator linguae, are arranged in a cross-helical 

pattern (de Groot and van Leeuwen, 2004). The fibers of the inner sheaths are also arranged 

in a cross-helical pattern in the portions of these sheaths that lie medial to the M. accelerator 

linguae; however, the fibers in the portions that are posterior to the M. accelerator linguae run 

parallel to the long axis of the entoglossal process (de Groot and van Leeuwen, 2004). 

Trunk and Tail
Chameleons are adapted to be able to produce a large amount of dorsoventral flexion. This 

is particularly true in their highly prehensile tail, which they are able to curl tightly under 

their body. Various works have been done on the vertebral column and tail of the chameleon 

(e.g. Siebenrock, 1893; Camp, 1923; Ali, 1948; Romer, 1956; Etheridge, 1967; Hoffstetter  

and Gasc, 1969; Zippel et al., 1999) but surprisingly little has been done on the trunk  

musculature (e.g., Mivart, 1870; Sathe, 1959).

Vertebral Column and Ribs The vertebral column of chameleons has been exam-

ined in only a handful of taxa. These studies have found the vertebral column within the 

family to be variable in a number of regards and to possess a number of functional special-

izations as compared with other Saurians. 

One of the most variable features of the chameleon vertebral column is the number of verte-

brae. The number of presacral (cervical, thoracic, and lumbar) vertebrae is known to range from 

14 (Bergmann and Irschick, 2011) to 23 (Hoffstetter and Gasc, 1969). Whereas having fewer 

5490036_CH0002.indd   24 03/10/13   1:55 PM



Chameleon Anatomy    25

than 23 presacral vertebrae is known only within Saurians that occur in the suborder Iguania, 

this range represents a reduction in the typical number of presacral vertebrae seen in the Iguan-

idae and Agamidae (Hoffstetter and Gasc, 1969). Further, with 14 presacral vertebrae, Brookesia  

superciliaris has among the lowest number of trunk vertebrae of all squamate reptiles  

(Bergmann and Irschick, 2011). Posteriorly, there are two sacral vertebrae in all taxa (Hoffstetter 

and Gasc, 1969) and caudal vertebrae are known to range from 17 (Nečas, 2004) to 62 (Etheridge, 

1967) with smaller, more terrestrial genera typically having fewer caudal vertebrae then larger, 

more arboreal genera (Etheridge, 1967; Nečas, 2004; Boistel et al., 2010).

All vertebrae have large procoelous centrums (Camp, 1923; Hoffstetter and Gasc, 1969; 

Raw, 1976) with elongated, cylindrical centra (Camp, 1923; Romer, 1956) and intercentra 

confined only to the cervical region (Fig. 2.3a) (Hoffstetter and Gasc, 1969). The neural 

spine is generally quite tall and typically extends posterodorsally with a posterior incline 

and terminates with a straight, axe-shaped dorsal edge (Fig. 2.3a,d) (Hoffstetter and Gasc, 

1969). The neural spine can be elongated considerably in certain regions of the spine in 

some species, such at Trioceros cristatus or T. montium (Case, 1909). In these cases, the dis-

tal ends of the neural spines are connected by strong connective tissue threads and covered 

with a skin membrane forming a strongly elevated crest (Case, 1909). Zygosphenes and 
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Figure 2.3. Vertebral elements of a generalized Bradypodion (a), Brookesia 
superciliaris (b, c, e, f) and Chamaeleo zeylanicus (d). Depicted are a lateral view of 
the first four cervical vertebrae (a), a dorsal (b) and transverse (c) view of a trunk 
(thoracic/lumbar) vertebrae, a lateral view of two proximal caudal vertebrae  
(d), and a dorsal (e) and ventral (f) view of the sacral vertebrae (fused into a synsacrum 
in Brookesia). (a) redrawn from Raw (1976; originally based on Hoffstetter and Gasc, 
1969), (b, c, e, f) from Siebenrock (1893), and (d) from Ali (1948).

lAbels: acc.ext 5 accessory extension; acc.na 5 accessory neural arch; at 5 atlas; cb 5 
chevron bone (hemal arch); cent 5 centrum; fcr 5 first cervical rib; inc 5 intercentra; 
ns 5 neural spine; pat 5 proatlas; poz 5 postzygapophysis; prz 5 prezygapophysis; 
tp 5 transverse process. 
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zygantra are absent from the vertebra (Raw, 1976). The articular facets of the prezygapophy-

ses and postzygapophyses are steep, resulting in near-vertical articulation, thus allowing for 

increased dorsoventral flexion (Hoffstetter and Gasc, 1969). Precaudal vertebrae lack ven-

tral hypapophyses in some species (Raw, 1976); however, three or four cervical intercentra 

are typical (Fig. 2.3a) (Hoffstetter and Gasc, 1969). 

All chameleons have five cervical vertebrae (Siebenrock, 1893; Werner, 1902b; Hoffstetter 

and Gasc, 1969; Raw, 1976; Nečas, 2004). However, some researchers (Camp, 1923; Romer, 

1956) have indicated the presence of only three, because the last two cervical vertebrae bear 

long cervical ribs (Fig. 2.3a) (Siebenrock, 1893; Werner, 1902b; Hoffstetter and Gasc, 1969; 

Raw, 1976; Nečas, 2004). These cervical ribs do not fuse to the sternum, however (Sieben-

rock, 1893; Hoffstetter and Gasc, 1969). The first two cervical vertebrae are the proatlas 

and atlas, respectively (Fig. 2.3a) (Hoffstetter and Gasc, 1969; Raw, 1976), with the proatlas 

appearing among Saurians only in the chameleons (Hoffstetter and Gasc, 1969). The three 

or four intercentra are always separated and maintain an intervertebral position on the ventral 

aspect of the cervical region of the vertebral column (Fig. 2.3a) (Hoffstetter and Gasc, 1969). 

Given a constant number of cervical vertebrae (Hoffstetter and Gasc, 1969; Raw, 1976; 

Nečas, 2004), the combined number of thoracic and lumbar vertebrae varies from 9  

(Bergmann and Irschick, 2011) to 18 (Hoffstetter and Gasc, 1969). Thoracic vertebrae have 

both sternal and parasternal ribs (Hoffstetter and Gasc, 1969), and the first two lumbar vertebrae 

typically have reduced lumbar ribs (Hoffstetter and Gasc, 1969; Raw, 1976).

The ribs in chameleons are unicipital, with a single articulation between the rib and the 

vertebra (Hoffstetter and Gasc, 1969) on the lateral margin of the vertebra (Rieppel, 1993). 

The ribs generally have two proximodistal segments, a bony vertebrocostal and a cartilagi-

nous sternocostal segment, although a third cartilaginous intercostal segment between the 

two aforementioned segments is sporadically seen within the Chamaeleonidae (Hoffstetter 

and Gasc, 1969). Three to four sternal ribs, which are joined to the sternum or mesosternum, 

are seen (Methuen and Hewitt, 1914; Hoffstetter and Gasc, 1969). Parasternal ribs have their 

distal cartilaginous segments fuse on the midventral line, forming a parasternum posterior 

to the sternum (Camp, 1923; Hoffstetter and Gasc, 1969) and range in number from 5 to 11 

(Sathe, 1959; Hoffstetter and Gasc, 1969). Two reduced lumbar ribs are observed on the ante-

riormost lumbar vertebrae (Hoffstetter and Gasc, 1969; Raw, 1967). 

The thoracic and lumbar vertebrae in Brookesia are somewhat different from those 

of other chameleons. Their thoracic and lumbar vertebrae have a bony arch between the 

prezygapophyses and postzygapophyses on one side of a single vertebrae and an accessory 

neural arch extending from this arch to the ridge of the neural spine (Fig. 2.3b,c) (Sieben-

rock, 1893; Parker, 1942; Rieppel, 1987). These bony shields (Romer, 1956) result in chan-

nels on either side of the neural spine, which have muscles running within them (Fig. 2.3c) 

(Siebenrock, 1893; Parker, 1942), and a more rounded dorsal crest with a less distinct ridge. 

In addition, some Brookesia have accessory extensions projecting laterally off the arch 

between the prezygapophyses  and postzygapophyses, corresponding to their laterovertebral 

spines (Fig. 2.3b,c,e,f) (Siebenrock, 1893; Parker, 1942). 
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The sacrum is typical in possessing two vertebrae (Werner, 1902b; Hoffstetter and Gasc, 

1969; Raw, 1976). These vertebrae bear wing-like transverse processes or sacral pleurapoph-

yses (Hoffstetter and Gasc, 1969; Raw, 1976), which are made up of fused sacral ribs (Hoff-

stetter and Gasc, 1969). The sacral vertebrae in Brookesia are fused to form a synsacrum 

(Fig. 2.3e,f) (Siebenrock, 1893; Klaver, 1979; Nečas, 2004).

The number of caudal vertebrae varies considerably between species (Etheridge, 1967; 

Nečas, 2004; Boistel et al., 2010). The transverse processes are dorsoventrally compressed 

and project ventrally rather than laterally in Chamaeleo (Fig. 2.3d) (Ali, 1948); however, in 

Furcifer, there is a transition from the transverse processes projecting ventrolaterally on the 

proximal portion of the tail to more laterally on the more distal portions of the tail (Zippel 

et al., 1999). Intervertebral chevron bones form the hemal arch (Fig. 2.3d) (Ali, 1948; Romer, 

1956; Etheridge, 1967; Hoffstetter and Gasc, 1969) and become smaller in size distally, disap-

pearing toward the end (Etheridge, 1967; Hoffstetter and Gasc, 1969). These chevron bones 

start on the first caudal vertebra in Brookesia; however, in other chameleons they do not begin 

immediately and result in up to four proximal caudal vertebrae lacking a chevron bone (called 

“pygal vertebrae”) (Hoffstetter and Gasc, 1969). No caudal autotomy and no autotomy planes 

exist in chameleons (Romer, 1956; Etheridge, 1967; Hoffstetter and Gasc, 1969).

A number of adaptations for increased dorsoventral flexion of the tail are seen in the mor-

phology of the caudal vertebrae. The surface of the anterior and posterior vertebral centrum 

are not evenly rounded, with a reduced ventral lip on the concave surface of the anterior cen-

trum and a stronger sloped dorsal half of the convex surface of the posterior centrum (Ali, 

1948). This pattern becomes more prominent distally and allows for increased dorsoventral 

articulation between adjacent caudal vertebrae (Ali, 1948). In addition, the prezygapophy-

sis and postzygapophysis of the caudal vertebrae are elongated (Fig. 2.3d) (Ali, 1948; Zippel 

et al., 1999). The steep slope of the facets on the prezygapophysis and postzygapophysis 

(Ali, 1948; Hoffstetter and Gasc, 1969), allow for dorsoventral movement, while restricting 

lateral movements, and their length allows the interlocking prezygapophysis and postzyg-

apophyses to remain in close contact even when the tail is fully coiled (Ali, 1948). 

The form of the caudal vertebrae differs once again in Brookesia. Like the thoracic and 

lumbar vertebrae, the more proximal caudal vertebrae of Brookesia have a bony arch extend-

ing from the ridge of the neural spine to an arch between the prezygapophysis and postzyg-

apophyses (Boistel et al., 2010). They also have an additional arch extending from the arch 

between the zygapophyses and the ridge of the transverse processes, which extends ventro-

laterally in Brookesia (Boistel et al., 2010). More terminal caudal vertebrae, however, lack 

this bony shield, likely resulting in increased vertebral mobility of the distal portion of the 

tail (Boistel et al., 2010).

Trunk Musculature The trunk musculature in reptiles is broadly arranged into epax-

ial and hypaxial musculature based on innervation from either the dorsal or the ventral 

branch of the spinal nerves, respectively, rather than on topographic criteria, as in fishes 

(Gasc, 1981). In general, however, the trunk musculature in chameleons has not been 
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thoroughly examined (see Mivart, 1870, and Sathe, 1959) and is only superficially discussed 

here as a result. 

In general, epaxial muscles of reptiles are divided into medial, central, and lateral columns, 

consisting of the M. transversospinalis group, M. longissimus group, and M. iliocostalis 

group, respectively (Gasc, 1981). The epaxial musculature in chameleons is highly reduced 

(Gasc, 1981), largely because movements of the girdles substitute for bending of the body 

column (Peterson, 1973; Gasc, 1981). Mivart (1870) refers to upper and inferior portions of the 

longissimus dorsi, presumably referring to the M. transversospinalis and M. longissimus, 

respectively, which extend onto the tail (see “Tail Musculature,” below). Muscles that could 

be associated with the M. iliocostalis group are not clearly described by Mivart (1870) and the 

arrangement in other Saurians is diverse (Gasc, 1981).

Hypaxial musculature in reptiles is typically divided into medial, lateral, and subverte-

bral layers (Gasc, 1981). The medial layer includes the M. transversus, M. obliquus internus, 

M. intercostalis internus, and M. rectus (Mivart, 1870; Gasc, 1981). The lateral layer consists 

of the M. intercostalis externus and M. obliquus externus (Mivart, 1870; Gasc, 1981). Finally, 

the subvertebral layer is generally restricted to the neck in Saurians (Gasc, 1981), and mus-

cles that could be associated with this layer are not clearly described by Mivart (1870). 

Tail Musculature The caudal muscles are primarily organized into four longitudinal 

muscle bundle pairs (Ali, 1948; Zippel et al., 1999). Two of these pairs lie dorsal to the axis of 

rotation of the vertebrae and represent the epaxial musculature of the tail (M. transversospi-

nalis and M. longissimus), whereas the other two pairs lie ventral to the axis of rotation and 

represent the hypaxial musculature (M. iliocaudalis and M. inferocaudalis) (Ali, 1948; Zippel 

et al., 1999). One to two tendinous bands originate from each of these muscles every vertebral 

length, creating a segmented pattern to the tail musculature (Zippel et al., 1999). These ten-

dinous bands insert onto one or more distal or proximal vertebral processes (Ali, 1948; Zippel 

et al., 1999). Activity of the epaxial musculature is responsible for extending the tail, whereas 

activity of the hypaxial musculature is responsible for curling it (Ali, 1948; Zippel et al., 1999).

The M. transversospinalis occupies the space between the neural spine and the zyg-

apophyses on each side of the caudal vertebrae (Ali, 1948; Zippel et al., 1999). Each segment 

of this muscle gives rise to a single tendinous band, about halfway between two successive 

neural spines, which extend posteroventrally (Zippel et al., 1999). Approximately halfway 

between the posterior of the two aforementioned neural spines and the next most distal 

neural spine, these tendons bifurcate, with one branch continuing to run posteroventrally 

to insert on the next postzygapophysis and the second branch running posterodorsally to 

insert on the next neural spine before continuing posteroventrally (Zippel et al., 1999). A 

division of the M. transversospinalis, called the “M. interspinalis,” originates on a neural 

spine and inserts on the next most distal neural spine via a tendon, which continues pos-

teroventrally (Zippel et al., 1999).

The M. longissimus occupies the space between the zygapophyses and the transverse pro-

cess on each side of the caudal vertebrae (Ali, 1948; Zippel et al., 1999). Each segment gives 
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rise to a single, broad tendon posteroventrally to a zygapophysis (Zippel et al., 1999). This 

tendinous band runs anteriorly past the next most proximal zygapophysis, where it extends 

superficially from beneath the previous muscle segment’s tendon (Zippel et al., 1999). The 

tendon continues anteriorly, where it is supplanted by the next tendon, to which it continues 

to run dorsal, eventually inserting on a prezygapophysis a few vertebrae anterior to where its 

associated muscle gave rise to it (Zippel et al., 1999). While the tendon is running superfi-

cially to the previous muscle segment’s tendon and before it is supplanted by the next muscle 

segment’s tendon, a branch splits off the tendon and runs anteroventrally and inserts onto 

circumferential connective tissue dorsal to the transverse processes (Zippel et al., 1999). 

The M. iliocaudalis occupies the space below the transverse processes on each side of 

the caudal vertebrae but also extends between and slightly above them as well (Ali, 1948; 

Zippel et al., 1999). This muscle is composed of distinct dorsalis and ventralis divisions 

(Ali, 1948; Zippel et al., 1999), but because of the transition of the transverse process from 

a ventrolateral projection proximally to a primarily lateral projection more distally in some 

species, their positions relative to this process may vary along the length of the tail (Zippel  

et al., 1999). On the proximal portion of the tail, the tendinous band of the M. iliocauda-

lis dorsalis originates above the transverse process but transitions to originating below the 

transverse process more distally (Zippel et al., 1999). This tendon runs posteriorly and spans 

at least one vertebra before inserting on the tip of the transverse process on a more posterior 

vertebrae on the proximal end of the tail or on the circumferential connective tissue more 

distally (Zippel et al., 1999). As it runs across the transverse process of the vertebrae proxi-

mal to its insertion, a branch breaks off of this tendon and extends posterodorsally (Zippel et 

al., 1999). The insertion of this branch, however, varies along the length of the tail (Zippel et 

al., 1999). On the proximal portion of the tail, the tendinous band of the M. iliocaudalis ven-

tralis originates anteroventral to the transverse process but transitions to originating in the 

cleft separating the M. iliocaudalis and M. inferocaudalis more distally (Zippel et al., 1999). 

Although Ali (1948) finds that these tendons run anteriorly, Zippel et al. (1999) find that they 

run posteriorly and emerge from within the muscle at the next transverse process. Zippel et 

al. (1999) go on to describe that approximately halfway to the next transverse process, the ten-

don bifurcates, with the dorsal branch extending beyond that of the next transverse process 

and inserting on the next more distal one; the ventral branch joins with the superficial cir-

cumferential connective tissue as it goes deep between the M. iliocaudalis ventralis and M. 

inferocaudalis, presumably then inserting on the hemal arch (Zippel et al., 1999).

The M. inferocaudalis occupies the space along the ventral side of the caudal vertebrae 

and is separated at the midline by a vertical septum (Ali, 1948). The tendinous bands from 

this muscle originate along this septum and run posteriorly into the cleft between the two 

sides of this muscle, where they presumably insert on the hemal arches (Zippel et al., 1999). 

The number of vertebrae these bands span appears to increase distally (Zippel et al., 1999). 

A branch off the more proximal tendons extends dorsally along the surface of the muscle 

and joins with the superficial circumferential connective tissue as it runs deep between the 

M. iliocaudalis ventralis and M. inferocaudalis (Zippel et al., 1999). In Brookesia, in which 
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the proximal portion of the tail is largely immobile in many species, these ventromedial 

tendons are more strongly developed distally where tail mobility is increased (Boistel et al., 

2010).

Appendicular

As with other aspects of chameleon biology, the appendicular musculoskeletal system is 

highly specialized. This is likely influenced by the arboreal habitat in which most (but not 

all) chameleons live. In particular, chameleons tend to use perches of relatively small diam-

eter, and there is often considerable perch discontinuity (Peterson, 1984). In addition to 

the constraints imposed by an arboreal habitat (see Chapter 4), chameleons are cryptic and 

move very slowly in their natural habitat (Hopkins and Tolley, 2011). Despite the unique 

morphological and behavioral attributes, a paucity of information exists on the locomotor 

system of chameleons. This is in contrast to our understanding of general appendicular 

morphology in other lizards (Jackson, 1973; Losos, 1990; Garland and Losos, 1994; Aerts 

et al., 2000; Melville and Swain, 2000; Johnson and Russell, 2009; Higham and Russell, 

2010). The terminology used in this section follows that of Russell and Bauer (2008) and 

is somewhat different from the older terminology used by Mivart (1870). This section is not 

meant to be exhaustive. Rather, we will focus on the skeletal elements and muscles that dif-

fer in anatomy from other lizards, such as Iguana iguana and Agama agama. 

Pectoral Girdle and Forelimb
Skeletal Elements The shoulder region is probably one of the most noted features of 

the chameleon locomotor apparatus (Peterson, 1984). When considering the anatomy of the 

pectoral girdle, a common theme is the increased girdle mobility (Peterson, 1984). In addi-

tion, the girdle of chameleons is more laterally compressed, which has traditionally been 

linked to a relatively upright posture as compared with other lizards. However, see Chapter 4 

for a detailed discussion regarding posture in chameleons.

The breast–shoulder apparatus in chameleons differs in key respects from that of other liz-

ards. For example, the two halves of the sternum form an acute angle opposite the posterior end 

of the coracosternal joint, and the sternum is compressed into a V-shape (Russell and Bauer, 

2008). The midventral edge of the sternum is sharp and keeled, and the M. sternohyoideus 

and the M. pectoralis attach here. Although the presternum is often perforated with fonta-

nelles in lizards, this is the derived state (Lecuru, 1968a). Interestingly, chameleons were 

noted by Lecuru (1968a) as having an imperforate presternum, whereas others have noted the 

presence of a sternal fontanelle, such as in the genus Bradypodion (Skinner, 1959). The pres-

ence of a sternal fontanelle in other chameleons was also noted by (Peterson, 1973). 

Another key difference between chameleons and other lizards is the way in which the 

sternum articulates with the coracoid (coracosternal articulation). In most lizards, this 

articulation lies in the horizontal plane (Russell and Bauer, 2008). In chameleons, however, 

this articulation is turned dorsally (Werner, 1902b). In this case the glenoid is located con-

siderably dorsal to the coracosternal articulations. This ultimately leads to a more depressed 
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posture of the limb and passive closing (at least partially) of the coracosternal articulation 

(Russell and Bauer, 2008).

The predominant feature of the scapulacoracoid that has distinguished different groups 

of lizards is the fenestration pattern (Russell and Bauer, 2008). It was proposed by Lecuru 

(1968b) that there are six types of lacertilian scapulacoracoid, based primarily on the pattern 

of fenestrae. In this scheme, chameleons share a similar type with some geckos, character-

ized by an emarginated scapula and an unfenestrated coracoid separated by a scapulocora-

coid emargination (Lecuru, 1968b). 

The clavicle apparently appears early during development in Bradypodion and is then 

reabsorbed and replaced (in terms of location) by the sternocoracoid ligament (Skinner, 

1959). It has consequently been suggested that this ligament is homologous with the clavi-

cle. Interestingly, in a developmental study of Trioceros hoehnelii, there was no indication of 

a clavicle at any stage (Rieppel, 1993). The interclavicle is also lacking in chameleons (Peter-

son, 1973; Russell and Bauer, 2008). However, the longitudinal arm of the sternocoracoid 

ligament is homologous with the bony interclavicle (Peterson, 1973). 

Another ligament, the scapulosternal, is important for preventing anterior and lateral 

displacement of the girdle (Peterson, 1973). Although terrestrial lizards have a coracoidal 

arm of this ligament, which limits displacement in the coracosternal joint, chameleons lack 

this arm. This permits increased movement of the coracosternal joint during locomotion.  

The humerus lies distal to the pectoral girdle and articulates with the glenoid (gleno-

humeral joint). In lacertilians, the glenohumeral joint is relatively flexible, approximat-

ing a ball-and-socket joint (Haines, 1952; Russell and Bauer, 2008). In chameleons, the 

main articulation (there is a small second articulation on the lateral surface of the scapu-

locoracoid) faces posteriorly on the girdle (Peterson, 1973). In general, the ligaments of the 

articulation tend to be looser and are fewer in number relative to other lizards. This likely 

contributes to the increased range of movement of the humerus. The articular surface itself 

is relatively larger in chameleons, as compared with generalized nonarboreal lizards.

The humerus of chameleons has a number of attributes that differ from other terres-

trial lizards. First, the humerus tends to be longer, there is reduced torsion, and the bone is 

straighter (Peterson, 1973). In a study of eight species of lizard comprising both arboreal and 

terrestrial forms, including Anolis (5 species), Dipsosaurus, Chamaeleo, and Agama, chame-

leons exhibited the longest standardized humerus length. In addition, Chamaeleo exhibited 

22 degrees of long-axis torsion, which was considerably lower than that of other terrestrial 

genera such as Dipsosaurus (44 degrees) and Agama (28 degrees) (Peterson, 1973). Other 

differences between Chamaeleo and terrestrial lizards include a narrower humerus, and 

muscle attachments that are located more proximally. Finally, the humerus is longer in ter-

restrial chameleons than in arboreal ones (Bickel and Losos, 2002).  

Chameleons have extremely mobile forelimbs that emphasize an increased range 

of motion associated with moving in an arboreal habitat. Their limb motion tends to be 

more in a parasagittal plane than that of other lizards given the relatively upright posture. 

This also results in a reduced amount of long-axis humeral rotation. The glenohumeral 
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articulation is thus modified to enhance motion via expansion of the articular surfaces. 

This allows the humerus to slide laterally during protraction. The lateral orientation of the 

articular surface also enhances excursion into the anterior quadrants of the glenoid (Russell 

and Bauer, 2008). Together, these morphological specializations allow up to 150 degrees of 

movement in the horizontal plane (Peterson, 1973, 1984). 

The wrist in chameleons is highly modified over that of other lizards, and this is asso-

ciated with their specialized pattern of locomotion. In both anatomical and developmental 

studies, it is clear that fusion of elements in the carpus is prevalent among chameleons (Gasc, 

1963; Rieppel, 1993). However, several aspects of this fusion have been the source of debate, 

with studies presenting varying conclusions (for a discussion, see Russell and Bauer, 2008).

In terms of function, the proximal carpal row is aligned functionally with the antebrachium. 

In this case, the wrist joint is a pivot between the proximal and distal rows of carpals. This joint, 

which involves articulation between the ulnare and the large element of the distal carpal row, 

has been interpreted as being mechanically equivalent to a ball and socket joint (Gasc, 1963). 

The metacarpals of chameleons are extremely different from those of other lizards. The 

metacarpals are divided into two bundles that articulate with the largest element of the dis-

tal carpal row (Gasc, 1963), where the first three digits form one bundle (mesial) and the 

fourth and fifth form another (lateral). These two groups of digits form the grasping mecha-

nism of the forelimb. 

Muscular Elements
AxiAl musCulAture ACting on the peCtorAl girdle The M. episternocleidomastoideus 

has been a challenging muscle for anatomists studying lizards, given that not all of the 

skeletal elements are actually associated with this muscle in all species. The association 

of the M. episternocleidomastoideus with the M. trapezius has been discussed previously, 

and it has been suggested that this muscle is actually part of the M. trapezius (Jollie, 1962). 

This muscle originates at the posterior aspect of the ascending process of the parietal and 

the posterolateral margin of the paroccipital process of the exoccipital and inserts onto the 

anterolateral borders of the sternum (Mivart, 1870; Skinner, 1959). 

The M. trapezius is small and thin in chameleons, relative to other lizards. The fibers 

insert along the anterior margin of the dorsal part of the scapula (Peterson, 1973). As for 

the origin, cervical fibers are absent, which differs from other lizards. Instead, the origin is 

from the first three thoracic vertebrae. The clavotrapezius is absent in chameleons.

The M. levator scapulae originates from the transverse processes of the first cervical 

vertebra (atlas). The insertion is entirely marginal and lies dorsal to the acromial region 

(Skinner, 1959). There is an additional origin of this muscle in chameleons. It is from the 

basioccipital condyle of the skull, which is tendinous and shared with the cervical axial 

muscles (Mivart, 1870). This muscle is typically associated with lateral undulation in terres-

trial lizards (Peterson, 1973). Given the reduced lateral undulation in chameleons (Peterson, 

1984), and the lack of clavicular attachment, this muscle brings about scapular rotation in 

the parasagittal plane.
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The M. serratus anterior is primarily involved in suspending the body from the pecto-

ral girdle. Lizards typically have both dorsal and ventral portions, including multiple bel-

lies within each portion (Russell and Bauer, 2008). This muscle is reduced in chameleons, 

which have only two dorsal bellies and a single ventral belly (Mivart, 1870; Furbringer, 

1900; Skinner, 1959). In addition to this reduction, the fibers of this muscle are all in line 

with the M. levator scapulae (Peterson, 1973). Finally, the bellies of this muscle in chame-

leons are longer than in other lizards, and this is thought to assist in the displacement of the 

girdle on the body wall (Peterson, 1973).

shoulder musCulAture The shoulder musculature is typically important for 

protraction and retraction of the humerus in lizards and also plays an important role in sta-

bilizing the shoulder joint. As described below, the shoulder musculature of chameleons 

is drastically different from that of other lizards because of, or associated with, increased 

mobility of the forearm. The M. sternocoracohumeralis is comparable to the M. clavodel-

toideus in lizards other than chameleons. However, it maintains a different name because 

of the altered origin and the lack of a clavicle in chameleons (Peterson, 1973). There is also 

considerable variation in the morphology of this muscle among lizards. In chameleons, a 

small M. sternohumeralis belly originates from the superficial surface of the L. scapulo-

sternale anterior. This is near the junction of the transverse with the longitudinal arm of 

the ligament. This region is analogous with the interclavicle–clavicle joint region (Peterson,  

1973). The M. coracohumeralis portion exhibits a dorsolateral origin, at the level of the  

glenoid. In chameleons, as compared with other lizards, the M. sternocoracohumeralis is 

relatively small. The M. sternohumeralis fibers and the ventral M. coracohumeralis fibers 

form a bipinnate tendon that inserts along the proximal part of the dorsolateral aspect of the 

deltopectoral crest of the humerus (Peterson, 1973). 

The M. supracoracoideus has been noted to be very different in chameleons as compared 

with other lizards (Mivart, 1870; Furbringer, 1900; Ribbing, 1938; Skinner, 1959; Gasc, 

1963; Peterson, 1973). This muscle is divided into two discrete portions, originating from the 

lateral surface of the coracoid and the ventral scapula. The dorsal limit of the origin is the 

acromion. In chameleons, this muscle inserts along the anterior face of the lateral tuberosity 

between the glenohumeral joint capsule medially and the insertion of the M. pectoralis later-

ally. This muscle pulls the head of the humerus forward, protracts the humerus, and stabi-

lizes the glenohumeral joint (Peterson, 1973). 

The M. medial suprascapularis was first named by Peterson (1973) and is present only 

in chameleons. This muscle is found on the anteromedial surface of the scapular blade and 

is deep to the M. levator scapulae insertion. This muscle lies anterior to the origin of the  

M. subscapularis (Peterson, 1973). The M. suprascapularis medialis inserts on the proximal 

humerus. The origin includes the anteromedial margin of the scapula and suprascapular 

cartilage and a sheet of dense fascia, which separates the muscle belly from the M. subscap-

ularis. Peterson (1973) noted the unique arrangement of fibers in this muscle. For example, 

the dorsalmost origin is fleshy or has short, fine tendons arising from the fascial sheath. 

Within a few millimeters of the dorsal limit of the origin, there exists a central tendon 
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within the muscle belly. Interestingly, as muscle fibers stem from the scapular margin, they 

coil anteriorly, then medially, and ultimately posteriorly and deep into the belly, where they 

meet the tendon (Peterson, 1973). It is thought that the M. medial suprascapularis is derived 

from the M. supracoracoideus complex, and that it shares the actions of this complex. In 

addition, the evolutionary origin of this muscle suggests that it is related to the adaptation 

for protraction and a greater range of forelimb movement in chameleons (Peterson, 1973).

The M. biceps originates between the origins of the M. supracoracoideus and the 

M. coracobrachialis brevis, and near the ventral border of the coracoid (Peterson, 1973). The 

tendon of chameleons, which is small and round, originates more dorsally and occurs at 

the level of the inferior glenoid buttress. The M. biceps fuses with the M. brachialis over 

the distal third of the arm and then inserts on the proximal portion of the radius and ulna 

(Peterson, 1973). 

The M. pectoralis is the largest muscle in the shoulder area; it covers the entire ven-

tral aspect. In chameleons, this muscle originates from a sternal keel in the midline and 

the lateral surface of the sternum posterior to the first sternocostal articulation (Peterson, 

1973). The insertion of the M. pectoralis is the deltopectoral crest, but is less tendinous and 

involves a smaller humeral area in chameleons. Relative to other lizards, the insertion onto 

the humerus is more proximal, which permits a greater range of motion (greater arc) of the 

humerus. This muscle will retract the humerus.

The M. latissimus dorsi is biarticular, spanning both the coracosternal and glenohu-

meral articulations. It is essentially a flat sheet that originates from an aponeurosis near 

the dorsal midline over the level of cervical vertebra 5 to thoracic vertebra 5 (Peterson, 1973). 

The origin in chameleons also incorporates the third, fourth, and fifth thoracic ribs. The 

M. latissimus dorsi inserts onto the proximal portion of the humerus. Like the M. pectora-

lis, this muscle is also a humeral retractor (within the parasagittal plane) with little ability 

to rotate the humerus. 

In lizards, the M. triceps complex is typically comprised of four bellies, two of which 

originate from the shaft of the humerus and two of which originate from the primary  

girdle (Russell and Bauer, 2008). They all have a common tendinous insertion on the ulna. 

However, chameleons exhibit a three-headed condition, missing the coracoid arm of the 

sternoscapular ligament and the M. coracotriceps. It is thought that the absence of this  

ligament and the M. coracotriceps permits an increased range of motion and forward reach 

in chameleons. In other species of lizard, this ligament and muscle impose limitations.  

lower Forelimb musCulAture Much of what is known about forelimb musculature in 

chameleons is related to the muscles acting at the girdle. This is likely due to the extreme 

motion at the level of the girdle during locomotion. The function of the lower forelimb 

(antebrachium) has not received as much attention, and future work will help illuminate the 

functional consequences of the specialized morphology of chameleons.

The M. extensor digitorum longus typically occupies the anterior area of the forearm. 

The origin, via a short tendon, is just dorsal to the radial condyle of the humerus (Russell 

and Bauer, 2008). In chameleons, there are two bellies. The first runs along the ulna and 
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inserts close to the proximal ends of the fourth and fifth metacarpals. The second belly 

exhibits a tendinous insertion onto the third metacarpal. Although the exact function of 

this muscle could be related to flexing the carpus dorsally during the swing phase or pull-

ing the antebrachium forward over the manus, more work is needed. The fact that the num-

ber of insertion points in chameleons is reduced from three (typical lizard) to two suggests 

a relation to the pincer-like nature of the manus and the specialized locomotor behavior.

The M. flexor digitorum longus of chameleons exhibits substantial differences from 

that of other lizards, but appears to share some similarities with Gekko (Russell and Bauer, 

2008). This muscle is divided into four heads. Two of them originate from the humerus 

and the other two originate from the ulna. The posterior head that originates from the 

humerus inserts on digit five only. The other head, originating from the humerus, serves 

the other digits. The ulnar heads follow an insertion pattern  similar to that of the humeral 

heads, with the anterior deep head inserting on digits one to four. The posterior deep head 

inserts onto digit five.

Pelvic Girdle and Hindlimb
Skeletal Elements The pelvic girdle is comprised of the dorsal ilia, anteroventral 

pubes, and the posteroventral ischia (Russell and Bauer, 2008). On each side, the three com-

ponents share a common suture, which is centered on the acetabulum. In the midventral 

line, the pubes and ischia also share a suture. The epipubis is an ossified structure that is 

between and anterior to the pubes in chameleons. 

The femur articulates with the acetabulum via an oval and gently curving condyle. For 

most lizards, an internal trochanter lies anterior and somewhat ventral to the condyle. How-

ever, the internal trochanter has been reduced to a ridge in chameleons (Cope, 1892). The 

distal portion of the femur has rarely been examined in lizards, but it is clear that chame-

leons exhibit differences that are related to their locomotor mode. The lateral distal condyle 

in lizards is typically larger than the mesial condyle, but chameleons do not follow this pat-

tern (Russell and Bauer, 2008). Instead the lateral and mesial condyles are comparable in 

size. In addition, the demarcation of the patellar surface is absent in chameleons. 

The tarsus is made up of a proximal row, including the astragalocalcaneum, and a dis-

tal row, which is functionally a part of the pes (Russell and Bauer, 2008). The mesotar-

sal joint (ankle joint) is located between the crus (lower limb) and the proximal tarsal row. 

The astragalus and calcaneum of lizards typically develop as independent condensations, 

with the astragalus ossifying first. The tarsus of chameleons, however, is unique in that 

it originates from a single large cartilage distal to the tibia and fibula (Russell and Bauer, 

2008).

With the exception of chameleons, all lizards that have been examined exhibit a flat-

tened astragalocalcaneum. (For a more detailed description for lizards other than chame-

leons, see Russell and Bauer [2008].) In chameleons, it is curved and depressed to form a 

ventrally directed concavity. Tendons run within this concavity, and the astragalocalcaneum 

takes on the role of a pulley. However, chameleons do not exhibit this modification. 
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In chameleons, a globular fourth tarsal alone articulates with all of the metatarsals. As with 

the metacarpals, the metatarsals are grouped into two bundles. However, unlike the forelimb, 

the first and second are grouped together while the third, fourth, and fifth are grouped together 

(Rieppel, 1993). 

Muscular Elements The musculature of the hindlimb of the chameleon was first 

determined by Mivart (1870), using the Parson’s chameleon (Calumma parsonii). A more 

recent study of hindlimb muscle anatomy examined the veiled chameleon, Chamaeleo 

calyptratus (Higham and Jayne, 2004a). 

The M. caudofemoralis is a robust muscle originating from the transverse processes 

of the four most proximal caudal vertebrae and inserting to both the greater trochanter of 

the femur and the proximal portion of the fibula via an auxiliary tendon (Fig. 2.4 in the 

color insert). This muscle typically slows femur protraction during late swing in lizards. 

However, this does not seem to be the case in chameleons, which is likely due to their slow 

locomotor speeds (Higham and Jayne, 2004a). Instead, the M. caudofemoralis likely flexes 

the knee during early stance.

The M. iliofibularis originates via a tendon from the posterior and lateral margin of the 

ilium and inserts on the fibula distal to the insertion of the M. caudofemoralis auxiliary 

tendon (Fig. 2.4). Like other lizards, activity in the M. iliofibularis is predominantly during 

swing (Higham and Jayne, 2004a). 

In chameleons, the M. iliotibialis originates via a tendon from the posterior portion of 

the ilium just dorsal to the origin of the M. iliofibularis and inserts to the proximal tibia via 

the connective tissue on the anterior face of the knee. 

The M. flexor tibialis externus originates from the ilioischiadic tendinous arch, runs 

along the posterior and ventral portion of the thigh and sends a long tendon, running along 

the posterior edge of the lower leg, to the plantar ossicle (Fig. 2.4). In addition, the M. flexor 

tibialis externus sends a shorter tendon that crosses the M. iliofibularis and inserts on the 

fibula just proximal to the insertion of the M. iliofibularis (Fig. 2.4). 

The M. puboischiotibialis is on the ventral surface of the thigh and originates from the 

puboischiatic symphysis (midventral line) and inserts on the proximal portion of the tibia 

(Fig. 2.4). This muscle likely contributes to knee flexion and perhaps maintains the hori-

zontal orientation of the femur (Higham and Jayne, 2004a).

The M. gastrocnemius originates from both the distal part of the femur and the posterior 

aspect of the tibia and runs along the posterior edge of the lower leg where it inserts on the plan-

tar ossicle (Fig. 2.4). This is a stance phase muscle and is primarily involved in ankle extension. 

The M. extensor digitorum longus originates from the distal portion of the femur and 

from the posterior portion of the fibula and inserts onto both the fourth and fifth digit 

(Fig. 2.4). However, others have suggested that this muscle inserts only onto the third 

metatarsal (Mivart, 1870). This muscle, according to the muscle-activation patterns, is pre-

dominantly a stance-phase muscle, with a smaller burst occurring during the swing phase 

(Higham and Jayne, 2004a).
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The M. peroneus originates from the proximal portion of the anterior face of the fibula and 

from the proximal portion of the posterior tibia and inserts on the proximal and dorsal por-

tion of the fifth metatarsal (Fig. 2.4 in the color insert). This muscle is typically active during 

the first half of stance and is likely responsible for knee flexion (Higham and Jayne, 2004a).

The M. tibialis anterior originates from the proximal portion of the tibia and inserts 

onto the proximal portion of the first metatarsal (Fig. 2.4). When measured under in vivo 

conditions, this muscle exhibits variable activity and is often active for a large portion of the 

stride (Higham and Jayne, 2004a).

2.2 externAl morphology And integument

In addition to functions of protection, water balance, grasping and substrate interaction, 

etc., the external integument in chameleons also contains an assortment of signaling capa-

bilities. These signals range from color and pattern changes, the mechanistic basis of which 

range from sexual selection to species-recognition characteristics (Chapter 6). The struc-

ture of many of these external morphological characteristics is therefore important to much 

of the broader biology of chameleons.

scalation

Whereas superficial ossifications in the form of bony shield arches and accessory extensions 

are found in Brookesia above portions of the vertebral column (Siebenrock, 1893; Romer, 

1956; Boistel et al., 2010), body osteoderms, as in other iguanian lizards, are absent in cha-

meleons (Romer, 1956). Further, whereas some species exhibit small patches of bare skin 

(e.g., Bradypodion damaranum), the majority of the skin and external surface in chame-

leons is covered with keratinous and generally nonoverlapping scales (Nečas, 2004; Tilbury, 

2010). These scales come in various sizes, shapes, and arrangements and are often the basis 

of some of the larger ornamentations.

Scale Types and Scalation Patterns
Broadly, the scalation of chameleons is characterized by the consistency of the size and 

shape of the scales. When the scales appear to be of much the same size and shape, the ani-

mal is said to exhibit homogeneous scalation. When the scales appear to be of highly vari-

able size and shape, the animal is said to exhibit strongly heterogeneous scalation. In species 

with heterogeneous scalation, these scales can be distributed seemingly randomly or can 

be organized into distinct patterns, such as rows of enlarged scales or circular rosettes of 

scales on the flanks. Largely homogeneous or heterogeneous scalation patterns, however, 

can involve a variety of scale types.

While all scale-type designations are intended to be descriptive of the shape of the dif-

ferent scales, scale shapes are often grouped differently (e.g., Nečas, 2004; Tilbury, 2010). 

Because there is no single accepted set of scale types for chameleons, our chosen set of scale 

types may vary from other sources; however, examination of their respective descriptions 
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should help rectify inconsistencies. Here we divide the scale types in chameleons into con-

ical, granular, labial, keeled, tubercular, lenticular, plate-like, and stellate and polygonal 

scales.

Conical scales are elongate, lanceolate, or cone-shaped (Nečas, 2004; Tilbury, 2010). 

They are typically found the dorsal and gular crests but can also be found on the flanks, 

throat, tail, and head and rostral processes in some species (Nečas, 2004). 

Granular scales are small, bumpy, and granular-shaped. A more or less homogeneous 

arrangement of granular scales, such as in Chamaeleo senegalensis or C. laevigatus, is seen 

when these scales are spread across almost the entire body or in large patches with occa-

sional interspersed larger scales. Arrangements of these scales can also span the spectrum 

to arrangements in which these granular scales are seemingly found only interstitially 

between larger scale types (Tilbury, 2010).

Labial scales are semicircular scales found around the mouth. They are found in a single 

row around the mouth in all chameleons and form what appear to be lips.

Keeled scales exhibit a ridge down the middle of the scale coming to a point. They are 

uncommon in chameleons but are observed in the caudal scales of some Brookesia (Müller 

and Hildenhagen, 2009).

Tubercular scales are scales that form a rounded eminence or projection from the surface. 

These scales are typically found on the cranial crests (Nečas, 2004); however, some authors 

group lenticular, plate-like, and stellate scales as forms of tubercular scales (Tilbury, 2010).

Lenticular scales are rounded, circular scales that are taller in their center than on their 

periphery and are often lumped together with tubercular scales. They are often found on 

the flanks but can also be found on the limbs, tail, throat, and head (Nečas, 2004). They are 

often interspersed among smaller granular scales and can be enlarged to varying degrees, 

even within a single individual. 

Plate-like scales are rounded, flat scales and are often considered a type of tubercular 

scale. They are frequently found on the flanks but are also seen on the casque, rostral pro-

tuberances, occipital lobes, and extremities of some species (Nečas, 2004). They are often 

interspersed among smaller grandular and lenticular scales and can be of varying size, even 

within a single individual.

Stellate and polygonal scales are scales typically found on the flanks that have irregular-

shaped sides. In some Brookesia, Rhampholeon, and Rieppeleon species, the scalation of the 

body consists of heterogeneous, interlocking, star-shaped, or stellate, scales (Nečas, 2004; 

Tilbury, 2010). Some other chameleon species have body scalation consisting of heteroge-

neous polygon-shaped scales (Tilbury, 2010). 

Feet
The scales on the palms and soles of the feet in chameleons are generally rounded to give 

a cobblestoned or smooth appearance (Mariaux and Tilbury, 2006; Tilbury, 2010). In 

Brookesia and Rieppeleon, however, the scales on the feet are sharply pointed or spinous 

with acuminate spines (Mariaux and Tilbury, 2006; Tilbury, 2010). In Rhampholeon, one 
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to three spinous projections, called “accessory plantar spines,” are found at the base of each 

claw (Mariaux and Tilbury, 2006; Tilbury, 2010).

Dermal Pits
In many chameleon species dermal invaginations are found at the base of the limbs  

(Mariaux and Tilbury, 2006; Tilbury, 2010), which frequently contain mites (Tilbury, 2010). 

They take the form of axillary pits on the posteroventral base of the forelimbs and the inguinal  

pits on the anteroventral base of the hindlimbs. At least one of these sets of pits are found 

in most Calumma, Furcifer, Rhampholeon, and Rieppeleon species, but in some species their 

presence is inconsistent between individuals (Tilbury, 2010). 

Microstructure
Scanning electron microscope examination of the scales on the subdigital and subcau-

dal surfaces in chameleons shows a complex microstructure in many species. This can 

include complex arrangements of adhesive bristles or setae (Schleich and Kästle, 1979, 1985;  

Canham, 1999; Müller and Hildenhagen, 2009), rectangular to hexagonal honeycomb shapes,  

or thorny points (Müller and Hildenhagen, 2009). The length, shape, and combination of 

different microstructures in these regions varies between genera and species (Schleich and 

Kästle, 1979; Canham, 1999; Müller and Hildenhagen, 2009). For instance, the setae in 

some species appear rounded, whereas in other species they appear to come to a point or even 

appear heterogeneous in length and shape (Schleich and Kästle, 1979; Canham, 1999; Müller 

and Hildenhagen, 2009). There can also be variation in the length and shape of setae within 

individual pads (Müller and Hildenhagen, 2009). Finally, within the subcaudal region, there 

also appears to be differentiation between different areas, with a scansorial pad displaying 

distinct features relative to adjacent portions in some taxa (Schleich and Kästle, 1979). 

Although most genera exhibit some form of setae and honeycomb-shaped surfaces on 

their subdigital and subcaudal scales, there are also some distinct differences. The more 

agama-like thorny points, for instance, are only found in Brookesia and Rieppeleon (Müller 

and Hildenhagen, 2009). Further, Brookesia lack adhesive bristles altogether, having only a 

thorny point and/or rounded honeycomb structure (Müller and Hildenhagen, 2009). 

Claws

Chameleons have a claw projecting from each toe or two to three claws on each set of 

fused digits for a total of five claws per foot. All species of Archaius, Bradypodion, Brookesia, 

Calumma, Chamaeleo, Furcifer, Kinyongia, Nadzikambia, and Trioceros have a simple claw, 

whereas all species of Rhampholeon (Rhinodigitum), Rhampholeon (Bicuspis), and Rieppe

leon have bicuspid claws with the formation of a secondary point approximately midway 

along the main claw Klaver, 1979; Nečas and Schmidt, 2004; Mariaux and Tilbury, 2006;  

Tilbury, 2010). These claws are strongly bicuspid in Rhampholeon (Rhinodigitum) and Rham

pholeon (Bicuspis) but only weakly bicuspid in Rieppeleon, although Rieppeleon kerstenii may 

have strongly bicuspid rear feet (Tilbury, 2010). Within Rhampholeon (Rhampholeon), on 
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the other hand, only Rhampholeon (Rhampholeon) spectrum has bicuspid claws (Müller and 

Hildenhagen, 2009), whereas all others have simple claws (Tilbury, 2010).

ornamentation 

Chameleons exhibit a vast assortment of ornamentation based on their skeletal, dermal, 

and other structures. This ornamentation takes the form of various crests, cranial protuber-

ances, fan-like elongations on the vertebral column, occipital lobes, and intricate arrange-

ments of their scalation.

Crests
The bones of the skull form a number of sharp angles and ridges on the head, which are 

often subsequently adorned with tubercular scales of varying sizes. The degree to which 

these crests are developed and their shape are often associated with species recognition and 

sexual-selection characteristics.

The paired lateral crest extends anteriorly from the apex of the casque, over the orbits, and 

to above the mouth tip, where they fuse (Nečas, 2004). Each lateral crest is divided into three 

parts: the rostral crest, orbital crest, and lateral crest proper (Nečas, 2004). The rostral crests 

extend from the anterodorsal margin of the orbit forward to just above the mouth tip, where 

they join. They are formed by the prefrontals, maxillae, and premaxilla. The ocular crests are 

constrained to the upper margin of the orbits and are formed by either the prefrontals and 

postorbitofrontals, or the prefrontals, frontals, and postorbitofrontals, depending on whether 

or not the prefrontals and postorbitofrontals join. The lateral crest proper extends from the 

posterior margin of the orbit to the apex of the casque and is formed by the postorbitofrontal 

and squamosal portion of the upper temporal arch and ascending process of the squamosal.

In species with a narrow parietal bone, the parietal crest lies medially and extends pos-

terodorsally from immediately posterior to the eyes to the apex of the casque (Nečas, 2004) 

and is formed by the elevated ridge of the parietal bone. The parietal crest can be flat or 

highly concave and can be quite tall in some species. In species with a broad parietal bone, 

such as Bradypodion and Brookesia, the lateral aspects of the parietal bone form a pair of 

ridges lateral to the midline and medial to the lateral crests on each side called the “parasag-

ittal crests” (Raxworthy, 1991).

In some species, an additional crest, called the “temporal crest,” extends anteroventrally 

from the lateral crest posterior to the eye (Nečas, 2004). This crest is formed by the postor-

bitofrontal and in some cases the dorsal projection of the jugal.

Along the spine from behind the skull backward, a medial ridge is present in most cha-

meleons. A dorsal crest is said to be present when a series of enlarged, often conical, scales 

are present along this ridge. The dorsal crest, however, can be limited to only a few conical 

scales immediately behind the head or consist of a large number of conical scales extending 

down the back and even onto the tail. In Brookesia species, a dorsal crest is not seen; how-

ever, many species have accessory extensions projecting laterally off the vertebrae to form 

laterovertebral spines (Siebenrock, 1893). 
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A ridge of enlarged scales is also frequently found along the midline on the ventral side of 

the body, running from the symphysis of the lower jaw posterior to the cloaca. From the jaw 

symphysis to the anterior edge of the sternum, this ridge is called the “gular crest,” whereas 

from the sternum back to the cloaca it is called the “ventral crest.” In most species, the gular 

crest is formed by a single medial row of enlarged scales, whereas in Trioceros tempeli it is formed 

by two rows of enlarged scales and in Trioceros affinis it is formed by paired dermal ridges. 

Cranial Protuberances
Perhaps the most notable ornamentations in chameleons are the variety of cranial protuber-

ances adorned by many members of the family. These protuberances are highly variable in 

their form and function but include keratin-covered annulated horns, bony projections, and 

soft dermal lobes.

Among the most recognized of these cranial protuberances are the true or annulated 

horns. These horns have a bony base, are elongated and narrow, and are covered by an annu-

lated keratin sheath formed by a single hypertrophied scale (Nečas, 2004). These horns are 

typically located preorbitally or rostrally along the lateral crests; however, Trioceros melleri 

has an unusual structure, in which a single annulated horn is located on the end of a medial 

bony rostral projection separate from the rostral crest portion of the lateral crest (Rieppel, 

1981). When present, preorbital annular horns are paired with a single horn projecting from 

the anterodorsal aspect of each ocular crest. Rostral horns, on the other hand, can be either 

one, two, four, or six in number, and project side by side from one another on the anterior 

portion of the rostral crest.

Additional types of cranial protuberances are false or bony horns (Fig. 2.5). These horns 

are formed by projections of the cranial bones with a layer of scale-covered skin over them 

(Nečas, 2004). These scales are typically enlarged tubercular or plate-like scales. Often 

the false horns are paired and laterally compressed extensions of the rostral crest project-

ing forward beyond the tip of the jaw and formed by modified prefrontal and maxillary 

bones (Fig. 2.5) (Rieppel and Crumly, 1997). In some species, these paired false horns have 

become medially fused to each other, giving the appearance of a single laterally compressed 

paddle. False horns can also take the form of smaller elevated points along the lateral crests, 

such as the superior nasal cones and superior ocular cones in Brookesia (Raxworthy, 1991), 

or the single elevated rostral cones of species like Trioceros hoehnelii. 

The cranial protuberances of some species, however, are entirely flexible. These soft or 

dermal horns lack a bony base and are made of soft, scale-covered skin (Nečas, 2004). These 

dermal horns are typically covered by granular scales or other slightly enlarged scales that 

remain soft and pliant. They can be found preocularly or rostrally. Preocular dermal horns 

are typically paired, and rostral dermal horns can be either bulbous or laterally compressed.

Finally, semipliant horns are seen in a couple species and appear as intermediaries 

between false and dermal horns (Nečas, 2004). These horns have a bony base and a flexible 

tip (Nečas, 2004). The rigidity of this tip varies, possibly because of a fibrous or cartilagi-

nous tissue structure in the distal portions. 
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Sails
In some species, a tall sail along the vertebral column of the back or proximal portion of 

the tail is seen. This sail is formed by elongated neural spines of the vertebrae with strong 

connective-tissue threads between their distal ends and a skin covering (Case, 1909). These 

elongations form a fan-like sailfin on the proximal portion of the tail in some male West 

African Trioceros species, an elevated sail-like dorsal ridge in Trioceros cristatus and to a 

lesser extent T. deremensis, and a crenulated dorsal crest in T. melleri. 

Occipital Lobes
At the posterior margin of the head, many chameleon species have posteriorly oriented skin 

flaps called “occipital lobes.” These lobes can vary from quite narrow strips to large ear-like 

lobes. In some species, these occipital lobes have a connective-tissue structure and attach-

ment to the squamosal bone, giving the lobes a semirigid structure (Meyers and Clarke, 

1998). This connective-tissue “skeleton” is covered with mostly plate-like scales and in some 

species has an insertion by the M. depressor mandibulae pars auricularis, enabling the 

lobes to be erected during display (Meyers and Clarke, 1998). 

Tarsal Spurs
Whereas most species lack them, some species and some sexes of certain species exhibit a 

short posterior projection from their hindfoot called the “tarsal spur,” which is a bony exten-

sion of the tarsal bone covered in skin and scales (Tilbury, 2010). Of the species that do 
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Figure 2.5. The skull of a male Furcifer bifidus in lateral (a), and dorsal (b) views 
showing formation of false horn. Redrawn from Rieppel and Crumly (1997).

lAbels: ang 5 angular; ar 5 articular; bo 5 basioccipital; bs 5 basisphenoid; 
c 5 coronoid; d 5 dentary; ec 5 ectopterygoid; f 5 frontal; j 5 jugal; m 5 maxilla; 
n 5 nasal; p 5 parietal; pl 5 palatine; pm 5 premaxilla; po 5 prootic; pof 5 postorbi-
tofrontal; pf 5 prefrontal; prfo 5 prefrontal fontanelle; pt 5 pterygoid; q 5 quadrate; 
sang 5 surangular; so 5 supraoccipital; sq 5 squamosal; st 5 supratemporal; v 5 vomer. 
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exhibit them, in most it is more strongly developed in males; however, in some species they 

are present in both males and females. 

2.3 sensory struCtures

Chameleons are known to have an increased dependence on visual cues relative to their 

other senses. As a result, chameleons’ eyes have become highly developed. The remaining 

sensory structures, on the other hand, have become reduced or even vestigial in some cases. 

eye

The eye of chameleons is their most developed sensory organ, with higher image mag-

nification than any other vertebrate eye when scaled to the same size (Ott and Schaeffel, 

1995). The eyes are notably enlarged, are placed laterally on the head, bulge almost entirely 

out of the orbit, and move independently of each other. They are surrounded exteriorly 

by scale-covered eyelids, which are fused to the sclera of the eye and have only a small 

center opening for the pupil. This arrangement allows for an impressive oculomotor range, 

which exceeds both 180 degrees horizontally and 90 degrees vertically (Sándor et al., 2001). 

Moreover, they are likely the only reptiles to achieve binocular fixation with a central fovea 

(Underwood, 1970).

Their oculomotor range is enabled by four rectus muscles and two oblique muscles 

(Leblanc, 1924, 1925). The four rectus muscles have a fascicular origin posteroventrally on 

the medial side of the orbit on the interorbital membrane (Leblanc, 1925). The two oblique 

muscles, on the other hand, originate on the anteromedial aspect of the orbit at the junction 

of the palatine and prefrontal (Leblanc, 1925). 

The M. rectus superior is very broad and extends anterolaterally to inserts on the sclera 

on the dorsal surface of the eye just behind the cornea (Leblanc, 1925). It serves to elevate the 

cornea and rotate the dorsal surface of the eye posteroventrally (Leblanc, 1924, 1925). The 

M. rectus medialis extends horizontally behind the eye and then turns laterally to insert on 

the sclera on the anterior surface of the eye behind the cornea (Leblanc, 1925). It serves to 

draw the cornea anteromedially (Leblanc, 1924, 1925). The M. rectus inferior has two bun-

dles (Leblanc, 1924, 1925) that extend ventrolaterally and insert on the sclera behind the 

cornea on the ventral side of the eye and just ventromedially to the insertion of the M. rec-

tus medialis (Leblanc, 1925). They serve to draw the cornea ventromedially (Leblanc, 1924, 

1925). Finally, the M. rectus lateralis has two bundles that extend laterally to slightly dorso-

laterally (Leblanc, 1924, 1925). The upper bundle inserts on the sclera behind the cornea 

on the posterior side of the eye, whereas the lower bundle inserts on the anteroventral side 

of the conjunctival sac (Leblanc, 1925). They serve to draw the cornea posteromedially and 

draw the conjunctival sac over the Harderian gland (Leblanc, 1924, 1925).

The M. obliquus superior extends posteriorly in a dorsolateral direction and inserts broadly 

onto the sclera of the dorsal portion of the eye immediately behind and below the M. rectus 

superior (Leblanc, 1925). It serves to rotate the dorsal surface of the eye anteroventrally and 
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thus is an antagonist to the M. rectus superior (Leblanc, 1925). The M. obliquus inferior 

extends horizontally and slightly laterally to insert on the sclera on the ventral side of the eye, 

perpendicular to the insertion of the M. rectus inferior, which inserts along the edge of the 

cornea (Leblanc, 1925). It serves to rotate the ventral surface of the eye anterodorsally and thus 

acts with the M. rectus superior as an antagonist to the M. obliquus superior (Leblanc, 1925).

The scleral cartilage (ring) is present and in Chamaeleo is formed by 11 scleral ossicles, 

creating a conical form (Gugg, 1939; Underwood, 1970). It is confined to the orbital hemi-

sphere in the scleral layer of eye, with the cornea extending out of center (Leblanc, 1925; 

Underwood, 1970; Pettigrew et al., 1999). This scleral ossicle is coated with fine muscle 

fibers from the M. depressor palpebralis inferior of the eyelid just below the surface of the 

skin (Leblanc, 1924, 1925). This eyelid depressor muscle extends from the rim of the eyelid 

ventromedially around the eye in a thin sheet to the ventral and medial aspect of the orbit, 

where it originates on the palatine and interorbital membrane (Leblanc, 1925). This mus-

cle serves to draw the rim of the eyelid and scleral ossicle ventrally to cover and protect the 

eye (Leblanc, 1924, 1925), as seen when chameleons rub their eyes during cleaning. The  

M. levator bulbi is absent in chameleons (Underwood, 1970). 

Chameleons are unique among vertebrates in having a negatively powered lens (Ott and 

Schaeffel, 1995), thus reducing the contribution of the lens and increasing the contribution 

of the cornea to the total optical power of the eye (Ott and Schaeffel, 1995; Pettigrew et al., 

1999). This serves to elongate the focal length of the eye and create a large retinal image 

(Ott and Schaeffel, 1995; Ott, 2001). Because the crystalline lens is relatively thick, with 

its lateral and medial surfaces being relatively flat, the internal isoindical shells of the lens 

are concave in shape in order to establish this negative refractive power (Ott and Schaeffel, 

1995). The cornea is small (Underwood, 1970) and has a very small radius of curvature (Ott 

and Schaeffel, 1995), indicating that the cornea extends abruptly outward. Corneal curva-

ture, however, is modulated for corneal accommodation by the M. cornealis, which inserts 

directly onto the corneal stroma (Pettigrew et al., 1999). 

Finally, chameleons have extremely high visual resolution. They have a deep-pit fovea, 

with the retina being thick at its center and declining in thickness at its periphery (Ott and 

Schaeffel, 1995; Pettigrew et al., 1999). This retina has a dense photoreceptor package, with 

an estimated 756,000 cones/mm2 (Harkness, 1977; Ott, 2001). This estimate is the higher 

than in all other lizards, and whereas some researchers have indicated that this estimate is 

likely high, it is within the range found in humans and birds of prey (Harkness, 1977).

parietal organ and pineal gland

The function of the parietal organ and pineal gland in chameleons is not clear, and it is 

thought to be rudimentary in mature chameleons (Nečas, 2004). The pineal gland in cha-

meleons is located dorsal to the midbrain and cerebellum (Schmidt, 1909; Quay, 1979). 

Overall, it is tubular in shape, first extending posterodorsally and then bending at nearly a 

right angle into a strongly inclined anterodorsal extension toward the roof of the skull, ter-

minating in a long, thin tip (Schmidt, 1909).
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When present, the parietal organ, or pineal eye, is dorsoventrally compressed and has either 

a round or slight sagittally elongated shape (Schmidt, 1909). It lies just under the skin and con-

siderably anterior to the pineal gland, or pineal organ (Schmidt, 1909; Quay, 1979), in or above 

the pineal (parietal) foramen of the frontal bone (Romer, 1956; Rieppel, 1981). The location of 

this foramen in the frontal bone represents a forward shift from ancestral forms (Trost, 1956). 

The parietal organ is connected to the pineal organ by the parietal eye nerve (Quay, 

1979). A spot associated with the presence of the parietal organ, called the “parietal spot,” is 

visible in Bradypodion, Brookesia, Chamaeleo, and Furcifer, but absent in Rhampholeon, Riep

peleon, and Trioceros (Schmidt, 1909; Gundy and Wurst, 1976). The diameter of the parietal 

organ relative to the diameter of the pineal foramen in chameleons is known to vary from 

half its size to nearly twice its size (Edinger, 1955), so estimating development of the parietal 

organ based on the size of the pineal foramen is difficult. 

ear

The ear in chameleons is greatly reduced. There is no external ear opening or tympanic mem-

brane (Brock, 1941; Engelbrecht, 1951; Frank, 1951; Wever, 1968, 1973; Wever and Werner, 

1970), and the traditional round window is absent or extreme reduced (Wever, 1968, 1969a, 

1973). Some species further lack a tympanic cavity (Engelbrecht, 1951; Frank, 1951; Sim-

onetta, 1957; Toerien, 1963; Wever, 1968), and the columella is often reduced or modified to 

a level that it is regarded as nonfunctional (Toerien, 1963; Wever, 1968, 1969b). Further, the 

extracolumella exhibits various modifications and is noted to terminate on various tissues, 

affecting potential conductance (Wever, 1968, 1969b; Wever and Werner, 1970). Whereas 

these reductions have not resulted in the loss of ability to detect airborne sound, their hearing 

is greatly reduced (Wever, 1968, 1969a,b, 1973; Wever and Werner, 1970).

Whereas Rhampholeon lack a tympanic cavity (Frank, 1951) and Bradypodion is said to 

either lack (Engelbrecht, 1951; Simonetta, 1957) or possess a vestigial tympanic membrane 

(Brock, 1941), in Chamaeleo and Trioceros the tympanic cavity is well defined and encloses 

the middle ear (Wever, 1968, 1969b). In these taxa, the tympanic cavity is separated from 

the pharyngeal region by a membrane, although a small oval-shaped opening correspond-

ing to the Eustachian tube is found (Wever, 1968). 

The stapedial footplate of the osseous columella rests in the oval window at the floor of the 

otic capsule (Fig. 2.6) (Toerien, 1963; Wever, 1968, 1969a,b). In Chamaeleo and Trioceros the 

footplate is large and nearly fills the oval window (Fig. 2.6) (Wever, 1968, 1969b), whereas in 

Bradypodion the footplate is small and does not fit closely within the oval window (Toerien, 1963) 

and in Rhampholeon the footplate is extremely small or vestigial (Frank, 1951; Toerien, 1963). 

In Bradypodion (Engelbrecht, 1951; Toerien, 1963) and Rhampholeon (Frank, 1951) the col-

umella is poorly developed and may not form a connection with the quadrate (Toerien, 1963). 

When it does, a cartilaginous extracolumella lies at the distal end of the columella (Brock, 

1941; Wever, 1968, 1969b). In Chamaeleo, the extracolumella has anterior and posterior pro-

cesses (Fig. 2.6a) (Wever, 1968), whereas the anterior process is lacking in Trioceros (Fig. 2.6b) 

(Wever, 1969b). The anterior process of Chamaeleo extends along a membrane between the 
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quadrate and pterygoid to the thin edge of the pterygoid wing, where it forms a ligamentous 

attachment (Fig. 2.6a) (Wever, 1968). The posterior process of the extracolumella extends to 

the ventral part of the quadrate, forming a flat plate in the process (Fig. 2.6) (Wever, 1968, 

1969b), which is smaller in Trioceros (Wever, 1969b). Dorsal (superior) and ventral (inferior) 

ligaments extend from the extracolumellar plate, with the dorsal ligament extending from 

the proximal end of the plate along the quadrate toward the squamosal (Fig. 2.6) (Wever, 

1968, 1969b), and the ventral ligament extending from the distal end of the plate to the artic-

ulation between the quadrate and articular in Chamaeleo  (Fig. 2.6a) (Wever, 1968), and to the 

posterior end of the articular in Trioceros (Fig. 2.6b) (Wever, 1969b). 

In Chamaeleo, it is hypothesized that the pterygoid wing and the membrane extending 

to the quadrate, combined with the columellar system acts as a substitute tympanic mem-

brane by serving as a conductive mechanism for airborne sound (Fig. 2.6a) (Wever, 1968). 

The lack of ligamentous connection between the columellar system and the pterygoid in 

Trioceros, however, results in a lack of a tympanic membrane substitute (Wever, 1969b).

Whereas a traditional round window is lacking in chameleons (Wever, 1968, 1969a, 

1973), a substitute for it and its pressure discharge mechanism during oscillation of the oval 

window is known in Chamaeleo and Trioceros (Wever, 1968, 1969a, 1973). This substitute is 

present in the form of a fluid-filled path extending from the posterior wall of the scala tym-

pani of the ear, posteriorly into the exoccipital bone and then laterally through the foramen 

of the glossopharyngeal nerve and into the tympanic cavity (Wever, 1968, 1969a). 

The vestibular system of the inner ear has been examined in only a limited number 

of taxa. It is characterized by three well-developed semicircular canals with the curves of 

the posterior and anterior canals extending ventrally and the curve of the horizontal canal 

extending medially (Boistel et al., 2010). These semicircular canals are relatively flattened 
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Figure 2.6. Drawings of the inner aspects of the right ears of C. senegalensis 
(a) and T. hoehnelii (b) from a ventral, medial, and slightly anterior direction.  
(a) redrawn from Wever (1968) and (b) from Wever (1969b).
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and oblong in shape in Brookesia, whereas in Archaius, they are more rounded (Boistel et al., 

2010). Curiously, the horizontal canal in chameleons is only oriented horizontally when the 

head it elevated (Boistel et al., 2010).

tongue pad and taste buds

The bulbous portion of the tongue in chameleons that is projected from the mouth can 

be divided into the tongue tip, the foretongue, and the hindtongue (Herrel et al, 2001b). 

The tongue tip is composed of the bifurcated anteroventral end of the tongue and the area 

adjacent and posterior to it (Herrel et al., 2001b). The foretongue consists of the portion of 

the tongue pad that is invaginated to create a lingual pocket, or dimple, with an upper and 

lower lobe (Herrel et al., 2000, 2001b) and is often called the “membrana glandulosa” (Bell, 

1989). The hindtongue consists of the epithelium surrounding the M. accelerator linguae 

posterior to the tongue pad (Herrel et al., 2001b).

The tongue tip is bifurcated, with paired ventral plicae. This region is comprised of dense, 

closely packed papillae that show little to no visible microstructure (Herrel et al., 2001b). At 

the bifurcated tip, these papillae appear to be randomly oriented; however, posteriorly toward 

the foretongue, they are arranged in transverse rows (Herrel et al., 2001b). Taste buds are 

present on the tongue tip, but they are not abundant (Schwenk, 1985; Herrel et al., 2001b). 

The foretongue or membrana glandulosa consists of densely packed reticular papil-

lae oriented in transverse rows and exhibiting a prominent microstructure (Herrel et al., 

2001b). Extending posteriorly, the density of these papillae decreases (Herrel et al., 2001b). 

This region is rich in epithelial-gland cells producing serous and mucous secretions (Bell, 

1989; Herrel et al., 2000; Schwenk, 2000). Free plumose cells are known to be scattered 

occasionally on the edges of the foretongue in some species (Trioceros melleri; Herrel et al., 

2001b); however, they are reported to be numerous in the lingual pouch of chameleons 

(Schwenk, 1983, 2000). Further, studies have found this region to lack taste buds in some 

species (Trioceros melleri; Herrel et al., 2001b), whereas others have indicated that they are 

present, although not abundant, in other species (Trioceros jacksonii; Schwenk, 1985). 

The hindtongue lacks papillary structures and consists instead of a smooth epithelium 

around the M. accelerator linguae (Herrel et al., 2001b). Still, a prominent microstructure 

can be observed (Herrel et al., 2001b). Some studies have located taste buds in this region 

at higher concentrations than in the anterior regions (Herrel et al., 2001b), whereas other 

studies have found this region to be devoid of taste buds (Schwenk, 1985). 

Overall, chameleons possess fewer gustatory receptors than other Iguanian lizards 

(Schwenk, 1985; Herrel et al., 2001b). More broadly, however, taste buds are said to always be 

numerous in the oral epithelium of lizards, with the exception of varanids, which lack taste 

buds altogether, and chameleons, which lack them on the oral epithelium (Schwenk, 1985). 

nasal Capsule and nasal Cavity

Overall, the nasal capsule and nasal cavity is of reduced size, having been shortened and 

compressed in the process of being pushed anterodorsally because of the enlarged eye and 
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tongue (Brock, 1941; Malan, 1945; Engelbrecht, 1951; Frank, 1951; Visser, 1972; Slaby, 1984). 

The reduction and poor development of a number of features of the nasal capsule and nasal 

cavities, in addition to the olfactory nerves and olfactory nerve branches, has generally 

resulted in chameleons being considered microsmatic at best (Haas, 1937).

The cartilaginous nasal capsule is highly complex and differs considerably from that in 

ancestral lineages (Haas, 1937; Malan, 1945; Engelbrecht, 1951; Slaby, 1984; Hallermann, 

1994). Its roof and sidewalls are quite complete, whereas the floor is relatively incomplete 

(Haas, 1937; Engelbrecht, 1951). The interpretation of the formation or the floor, however, is 

the subject of a variety of interpretations, particularly with regard to the presence or absence 

of paraseptal cartilages (Haas, 1937; Brock, 1941; Malan, 1945; Engelbrecht, 1951; Slaby, 

1984). Discussion of the specific fine structure of the nasal capsule is not discussed here but 

can be reviewed elsewhere (Haas, 1937; Brock, 1941; Malan, 1945; Engelbrecht, 1951; Frank, 

1951; Visser, 1972; Slaby, 1984; Hallermann, 1994). 

The nostrils in chameleons are positioned laterally and enter the elongate and large 

diameter nasal vestibules at an oblique anterior direction (Engelbrecht, 1951; Parsons, 1970; 

Visser, 1972). The vestibular wall is composed of erectile muscular tissue with a layer of 

keratinized epithelium covering it (Malan, 1945; Engelbrecht, 1951; Frank, 1951), whereas the 

rest of the nasal cavities are lined with ciliated epithelium (Engelbrecht, 1951). The vestibules 

open laterally at their posterior end into the olfactory chamber located beneath it via a wide 

slit (Malan, 1945; Engelbrecht, 1951; Parsons, 1970). This slit is elongated in Bradypodion 

but shorter in Chamaeleo, forming a blind cavity posterior to the opening to the olfactory 

chamber (Malan, 1945; Haas, 1937; Parsons, 1970). The olfactory chamber is small, the most 

reduced of any reptile, and the olfactory epithelium is highly reduced (Haas, 1937; Malan, 

1945; Frank, 1951; Parsons, 1970). The nasal conchae, or turbinates, are reduced to a rudi-

mentary flat ledge (Haas, 1937) or absent altogether (Hallermann, 1994). The choanae lie 

directly beneath the opening between the vestibules and olfactory chamber in Bradypodion 

(Malan 1945; Engelbrecht, 1951). Inspired air is thus able to travel from the vestibules directly 

into and through the choanae in Bradypodion (Malan, 1945; Engelbrecht, 1951), whereas air 

must travel a more elaborate route in Chamaeleo through the olfactory chamber and into the 

choanae (Haas, 1937; Malan, 1945). Inspired air then travels from the choanae into the oral 

cavity (Engelbrecht, 1951). The paired choanal grooves in the palate of the oral cavity are deep 

and bordered by choanal folds, which are supported by the ectochoanal cartilages, which 

are in turn supported by the medial process of the maxillae (Engelbrecht, 1951; Frank, 1951).

Vomeronasal organ

The predominating theory on the presence and development of a vomeronasal, or Jacob-

son’s, organ in chameleons is based on that of Haas (1947), who described the presence 

of a “reduced” and “functionless” vomeronasal organ in Chamaeleo chamaeleon. Based on 

this study, many report chameleons in general to possess a rudimentary or vestigial vom-

eronasal organ (Nečas, 2004; Gehring and Lutzmann, 2011); however, some others simply 

state that the vomeronasal organ is absent in chameleons (Døving and Trotier, 1998). In 
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reality, there is no standard condition within the family (Parsons, 1970). For instance, the 

vomeronasal organ has been reported to be completely absent in some taxa (Slaby, 1984), 

including in Trioceros hoehnelii (Malan, 1945) and Rhampholeon platyceps (Frank, 1951), 

whereas it is regarded as rather rudimentary in C. dilepis (Born, 1879) and C. chamaeleon 

(Born, 1887; Haas, 1947) and well developed in Bradypodion pumilum (Malan, 1945; Engel-

brecht, 1951; Visser, 1972) and B. ventrale (Brock, 1941). This lack of ubiquity within the 

family is not typically discussed, because while we know very little about the structure of 

the vomeronasal organ in different chameleons, we know even less about its functionality. 

When present, the paired vomeronasal organs are located in the roof of the mouth anterior 

to the nostrils (Brock, 1941; Malan, 1945; Haas, 1947; Engelbrecht, 1951; Visser, 1972). Their 

openings into the oral cavity lie between the anterior tip of the vomer and maxillae (Brock, 1941; 

Haas, 1947; Engelbrecht, 1951), and the vomeronasals are separated from the choanae by Fuchs 

secondary palate rather than opening into them (Malan, 1945;  ngelbrecht, 1951). Their height is 

reduced, and whereas the vomeronasal organ in most lizards lies beneath the nasal vestibules, 

they lie medial to them in chameleons (Brock, 1941; Malan, 1945; Engelbrecht, 1951; Visser, 

1972). This more anterior and dorsal positioning is thought to be due to the need to accommo-

date the large eyes and tongue (Malan, 1945; Engelbrecht, 1951; Visser, 1972; Slaby, 1984).

The vomeronasal organs are covered dorsally and laterally by two cartilaginous plates 

(Brock, 1941; Malan, 1945; Engelbrecht, 1951), likely derived from the roofing cartilage, 

forming their own cartilaginous roof (Malan, 1945; Engelbrecht, 1951). Coverage by these 

cartilaginous plates is interrupted dorsolaterally by a fontanelle (Brock, 1941; Malan, 1945; 

Engelbrecht, 1951), which is not covered by the septomaxillary as in other lizards, as it is  

absent in chameleons (Malan, 1945; Engelbrecht, 1951; Frank, 1951; Visser, 1972;  

Hallermann, 1994). The ventral edges of the lateral cartilaginous plates are bent medially, 

forming a floor for the lateral portions of each vomeronasal organ (Brock, 1941; Malan, 1945;  

Engelbrecht, 1951). The vomeronasal organs are lined with ciliated epithelium (Engelbrecht, 

1951). There is no connection between the ductus nasolacrimalis and the vomeronasal 

organs in chameleons (Malan, 1945; Engelbrecht, 1951). 

brain and nervous system

The neurology of the chameleon has been studied by a number of researchers over the 

years. Here we very briefly comment on a couple of general trends as compared with other 

reptilian brains that apply more broadly to trends seen in other aspects of chameleon anat-

omy and ecology.

The cerebellum in chameleons is highly developed; it is long, narrow, and curved 

forward in shape, possibly because of its function in maintaining equilibrium, which is 

important in arboreal animals (Shanklin, 1930). Further, whereas the olfactory bulbs are 

typically large in reptiles, in chameleons they are minute, and the peduncles are very 

slender, adding further support to the notion that chameleons are microsmatic (Shanklin, 

1930; Goldby and Gamble, 1957). Similarly, the main vomeronasal-recipient structure, the 

nucleus sphaericus, is reduced in size and devoid of a cortical-like arrangement (Senn and 
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Northcutt, 1973; Northcutt, 1978). The basal optic-root ganglion is well developed and likely 

correlated with the wide range of eye movements in chameleons (Shanklin, 1930). Finally, 

the hypoglossal nucleus is highly differentiated, likely in association with the complex and 

highly evolved tongue and its complex projection mechanism (Shanklin, 1930).

Further information on the neurology of the chameleon brain can be found in Shanklin 

(1930). Other studies of the chameleon brain and nervous system have focused on the cerebral 

tube (Bergquist, 1952), neopallium (Dart, 1934), wall of the forebrain (Källén, 1951a,b), motor 

pathways of the eye (Stefanelli, 1941), and the nucleus opticus tegmenti (Shanklin, 1933).

2.4 VisCerAl systems 

In general, relatively little is known about the visceral systems in chameleons. Of note, how-

ever, are the lung and hemipenal morphology, which has been extensively examined for tax-

onomic purposes. Here we briefly describe the anatomy of these and other visceral systems.

Circulatory

Overall, the circulatory system of chameleons has not been well studied. The pathways and 

branching patterns of aspects of the arterial (Rathke, 1857; Mackay, 1886; Beddard, 1904; 

Adams, 1953, 1957) and venous (Beddard, 1904; Bruner, 1907) systems have been described 

in detail elsewhere and are not discussed here. Instead, a brief summary is provided on the 

aspects of the anatomy of the three-chambered heart of chameleons, which has received 

only minimal attention from researchers.

Internally, the ventricle of the heart is known to have seven apical chambers, as is typi-

cal of most reptilian hearts, but little else is known of the internal structure (Farrell et al., 

1998). Externally, the sinus venosus is well developed, with visible swelling at the conflu-

ence of the postcaval and right precaval veins (Kashyap, 1960; Farrell et al., 1998). The ter-

minal portion of the left precaval vein is also swollen but has a considerable constriction at 

its junction with the aforementioned confluence (Kashyap, 1960; Farrell et al., 1998). The 

right and left atria are of approximately equal size and an atrial diverticulum is present 

between the paired carotid arteries (Kashyap, 1960; Farrell et al., 1998). Whereas in most 

reptiles the conus arteriosus has been absorbed into the ventricle, traces of a vestigial conus 

arteriosus are visible at the base of the arterial trunk in chameleons (Kashyap, 1960; Farrell  

et al., 1998). The apex of the heart is attached to the pericardium by a gubernaculum  

cordis and the apical two thirds of the ventricle is attached to the pericardium by a mesocar-

dial membrane (Kashyap, 1960; Farrell et al., 1998).

respiratory

The lungs in chameleons are highly variable and can be extremely elaborate. Their struc-

ture has been extensively studied for use as a taxonomic marker (e.g., Klaver, 1973, 1977, 

1979, 1981) as the configuration of the pulmonary septa are conserved within groups of 

related species (Klaver and Böhme, 1986). 
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The larynx is formed, as in other reptiles, by the cricoid cartilage and arytenoid carti-

lages (Germershausen, 1913). In some species, an inflatable sac, called the “gular pouch,” is 

connected with the ventral wall of the trachea just behind the larynx (Germershausen, 1913; 

Klaver, 1981; Klaver and Böhme, 1986).

The lungs in chameleons occupy a large portion of the body cavity, with lung volumes 

that are among the largest for their size of any reptile (Perry, 1998). The luminal walls of the 

lungs have numerous terminal air sacs for gas exchange, called “edicula,” which are at least 

as wide as they are deep (Perry, 1998) and supported by a trabeculated smooth-muscle net-

work (Klaver, 1981; Perry, 1998; Tilbury, 2010). The lungs can be simple and sac-like or can 

have internal septa that project into the lumen of the lung in one of five patterns (Klaver, 

1981; Klaver and Böhme, 1986; Tilbury, 2010). Further, diverticula of differing shape, size, 

position, and number can project off the ventral and terminal aspects of the lungs in some 

species (Beddard, 1907; Methuen and Hewitt, 1914; Klaver, 1973, 1977, 1979, 1981; Klaver 

and Böhme, 1986; Tilbury, 2010).

A nonseptate condition is seen in all Brookesia, Rhampholeon, and Rieppeleon spe-

cies (Klaver, 1979; Klaver and Böhme, 1986; Tilbury, 2010), except Rhampholeon spinosus 

(Klaver, 1981). In this condition, the lung lumen forms a simple sac devoid of any septae 

(Klaver, 1979; Klaver and Böhme, 1986; Tilbury, 2010).

The first septation condition lacks long longitudinal septa, but the lungs are clearly 

divided, with the dorsal, cranial and ventral walls having varying numbers of small to mod-

erately sized septa (Klaver, 1973, 1977, 1981; Klaver and Böhme, 1986; Tilbury, 2010). This 

pattern is seen in Rhampholeon spinosus (Klaver, 1981) and members of the Bradypodion, 

Calumma, Furcifer, Kinyongia, and Nadzikambia genera (Klaver, 1973, 1977, 1981; Klaver and 

Böhme, 1986; Tilbury, 2010). 

The remaining four types of divisions are characterized by large longitudinal septa run-

ning posteriorly through the lumen from the orifice of the bronchus (Klaver and Böhme, 

1986). One of these types, as seen in Chamaeleo species, has two septa that end freely in the 

lumen (Klaver, 1973, 1977; Klaver and Böhme, 1986; Tilbury, 2010). The other three types 

are seen in the genus Trioceros and have one, two, and three septa that connect to the ven-

tral wall at their distal end, completely subdividing the lumen into chambers (Klaver, 19,73 

1977, 1981; Klaver and Böhme, 1986; Tilbury, 2010).

digestive

A limited number of studies have discussed the anatomy of the digestive system in chame-

leons, and most of this is related to the folding relief of the gastrointestinal tract. Therefore, 

here we only briefly describe some of the structure of the digestive system in chameleons. 

Whereas in most lizards the esophagus has smooth-surfaced longitudinal folds of  

relatively consistent diameter, the esophageal folds in chameleons are rough-surfaced and 

of varying diameter (Parsons and Cameron, 1977). The liver in chameleons is typically 

brownish gray in color and has two lobes, with the left lobe being larger and having the  

greenish-colored gallbladder positioned on its dorsolateral edge (Beddard, 1907; Nečas, 2004).  
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The pancreas is yellowish in color (Nečas, 2004) and bilobed, although these lobes are not 

always distinct, forming instead a single curved, elongated mass (Beddard, 1907). Part of 

the pancreas lies on the ventral side of the stomach, between the stomach and duodenum, 

with an additional portion extending toward the dorsal side of the stomach and back toward 

its posterior end (Beddard, 1907). The spleen is purplish red in color and located just ventral 

to the stomach (Nečas, 2004). 

Longitudinal folds in the stomach are of varying diameter and are not parallel, with 

both wavy and straight portions (Parsons and Cameron, 1977). The wall of the stomach 

between the longitudinal folds has a fine pebble-like surface (Parsons and Cameron, 1977). 

The tunica muscularis of the stomach is smooth muscle with an inner circular and outer 

longitudinal layer (Luppa, 1977). The muscular layer is of reduced thickness toward the 

pylorus of chameleons (Luppa, 1977). 

The intestinal tract is short and poorly differentiated (Nečas, 2004). Longitudinal folds 

of the duodenum have an irregular pattern with tall, thin folds that can appear membra-

nous (Parsons and Cameron, 1977). Their borders are crenulated and the edges bear pro-

jections (Parsons and Cameron, 1977). The wall of the duodenum between the folds is very 

rough and has occasional fine longitudinal ridges (Parsons and Cameron, 1977). The rest 

of the small intestine has thicker folds with borders that are even more irregular (Parsons 

and Cameron, 1977). 

The colon has very large, thick, transverse folds that are separated by deep clefts (Par-

sons and Cameron, 1977). These folds have smaller, randomly arranged, longitudinal folds 

running along their surface (Parsons and Cameron, 1977). The large folds are very rough, 

with grooves and small projections similar to villi (Parsons and Cameron, 1977). Intestinal 

glands (glands of Lieberkühn) are reported in the colon of chameleons (Luppa, 1977). The 

cloaca also is reported to have simple tubular (unbranched) glands, which are independent 

of one another (Luppa, 1977). 

urogenital

Most of our knowledge of the chameleon urogenital system stems from the use of the male 

reproductive parts as taxonomic markers (e.g., Klaver and Böhme, 1986). Here we only 

briefly discuss the structure of other urogenital structures and focus on the hemipenes, 

because of their importance in species differentiation and taxonomy.

The kidneys are located in the posterodorsal portion of the body cavity along the spine 

(Nečas, 2004) and are elongate pear-shaped to uniformly elongate (Fox, 1977). A urinary 

bladder is present in chameleons and opens ventrally into the cloaca (Fox, 1977). The uri-

nary bladder may be used for water storage (Burrage, 1973).

In females, the oviducts and eggs occupy a large portion of the body cavity when a clutch 

is being developed (Nečas, 2004). In males, the testes are black and the seminal vesicles 

have a tubular arrangement (Fox, 1977).

Male chameleons, like other squamates, have a paired intromittent organ called the 

“hemipenes.” The hemipenes are held inside the body in an inverted position while at rest. 
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It is held in a pocket posterior to the vent in the base of the tail, often forming a hemipenal 

bulge, which can be useful in determining the sex of individuals. 

Each hemipenis in chameleons has either a strong clavate shape, in the case of Brookesia, 

Rhampholeon, and Rieppeleon species (Fig. 2.7b), or weakly clavate to subcylindrical shape, 

as in other genera (Fig. 2.7a,c), when everted (Klaver and Böhme, 1986). Overall the hemi-

penis can be divided into three regions: the pedicle, the truncus, and the apex (Fig. 2.7c) 

(Klaver and Böhme, 1986). The pedicle is the proximal base of the hemipenis, the truncus 

is the medial portion, and the apex is the distal tip (Fig. 2.7c) (Klaver and Böhme, 1986). 

The pedicle of the hemipenis has a relatively smooth surface (Klaver and Böhme, 1986). 

The truncus can either be calyculate, with reticulated honeycomb-like pits, called “calyces,” 

ornamenting its surface (Fig. 2.7c), or acalyculate, with a smooth surface, making differen-

tiation between the pedicle and truncus difficult (Fig. 2.7b) (Klaver and Böhme, 1986). 

A channel-shaped groove, called the “sulcus spermaticus,” bordered by sulcal lips, runs 

along the hemipenal surface of the pedicle and truncus for sperm transport during copula-

tion (Fig. 2.7) (Klaver and Böhme, 1986; Nečas, 2004). The sulcus spermaticus is smooth, 

whereas the sulcal lips can be smooth or have ridge traces from the surrounding calyces 

(Klaver and Böhme, 1986). The sulcal lips may exhibit a capitate state, where they diverge 

distally to form a clear ridge boundary between the truncus and apex, or be noncapitate 

(Klaver and Böhme, 1986). 

The apex is simple to slightly bilobed at its distal end and is often elaborately ornamented, 

with ornamentation being arranged bilaterally (Klaver and Böhme, 1986). Ornamentation 

may include papillae, pedunculi, auriculae, rotulae, horns, and crests (Klaver and Böhme, 

1986). Papillae are fleshy and flexible projections that vary in size and shape and can be sin-

gle, paired, scattered, arranged in rows, or concentrated in papillary fields (Fig. 2.7a) (Klaver 

and Böhme, 1986; Nečas, 2004). Pedunculi are thick stalks protruding over the distal end of 
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Figure 2.7. Schematic sulcal views of hemipenis morphology for F. lateralis  
(a), R. platyceps (b), and C. calyptratus (c). Redrawn from Klaver and Böhme (1986).
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the sulcus spermaticus and can be papillate themselves (Fig. 2.7a) (Klaver and Böhme, 1986). 

Auriculae, on the other hand, are curved dentriculate ridges that occur on the asulcal side 

of the apex— that is, the opposite side of the hemipenis from where the sulcus spermaticus 

occurs (Fig. 2.7a) (Klaver and Böhme, 1986; Nečas, 2004). Rotulae are similar to auriculae 

but are more developed and semicircular discs with a denticulate or serrated outer margin  

(Fig. 2.7c) (Klaver and Böhme, 1986). Horns, as seen in many Rhampholeon species, are broad, 

rotund projections that taper toward their distal ends and curve toward the sulcal side of the 

apex (Fig. 2.7b) (Klaver and Böhme, 1986). Finally, crests, as seen in some Brookesia species, 

are papillate or dentriculate crests or crested lobes on the apex of the hemipenis (Klaver and 

Böhme, 1986). Interestingly, the development of these apical structures appears to be related 

to seasonal and hormonal factors, and specimens may exhibit intraspecific variation depend-

ing on reproductive state or the time of year (Klaver and Böhme, 1986; Tilbury, 2010).

endocrine and exocrine

Our knowledge of the anatomy of endocrine and exocrine structures in chameleons is 

extremely limited. Endocrine glands in chameleons have been examined only to a limited 

extent, and the description of their morphology is extremely superficial or limited to the 

broader context of larger groups of lizards (e.g., Lynn and Walsh, 1957; Gabe and Martoja, 

1961; Bockman, 1970; Gabe, 1970; Girons, 1970; Lynn, 1970), and is therefore not discussed 

here. Examinations of exocrine structures in chameleons are similarly limited; however, a 

unique, suspected holocrine gland is known in some chameleons.

Whereas chameleons lack the femoral glands common to many other lizards (Camp, 

1923), some do have a structure that is thought to be similar to the femoral gland in lizards 

and analogous to the sebaceous gland of mammals (Ogilvie, 1966). This structure, called 

the “temporal gland,” is a dermal pouch in the temporal region of the head that excretes 

decaying cornified skin cells (Ogilvie, 1966). When present, it is located between the super-

ficial muscles of the temporal region of the skull and the external layer of skin, anterior 

to the M. depressor mandibulae (Ogilvie, 1966). Its base lies beneath the quadratomaxil-

lary ligament, and the pouch opens into the commissure of the jaws when the lower jaw is 

depressed (Ogilvie, 1966). It is believed that this pouch may have arisen as a result of an 

increased area of skin present at the angle of the jaw (Ogilvie, 1966).

The development of the temporal gland is highly variable between chameleon spe-

cies and genera, with some of the most developed examples occurring in Trioceros, whereas 

Rieppeleon have only a small temporal pouch that is difficult to detect under a microscope, and 

Rhampholeon are believed to lack the pouch altogether (Ogilvie, 1966). Overall, the pouch has 

been observed to varying degrees of development in Bradypodion, Chamaeleo, Kinyongia, Riep

peleon, and Trioceros, but it is absent in Calumma, Furcifer, and Rhampholeon (Ogilvie, 1966). 

In addition, some chameleons are known to excrete salt from nasal salt glands (Burrage, 

1973). The structure of the nasal salt glands has not been examined in chameleons specifi-

cally; however, in lizards the salt gland is formed by the modified lateral nasal gland (Dunson, 

1976; Hazard, 2004) and consists of branching secretory tubules projecting radially around 
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a central duct (Burrage, 1973; Dunson, 1976) that opens into the nasal vestibule (Peaker 

and Linzell, 1975). These glands produce a brine of potassium, sodium, and chloride that is 

exuded from the nostrils and dries, forming deposits around the nares (Burrage, 1973). 

While the multitude of unique features of chameleons has resulted in many researchers 

examining various aspects of chameleon anatomy over the years, a considerable gap in our 

knowledge remains. Future work will likely reveal morphological differences between spe-

cies and genera of chameleons, especially those that live in different types of habitats. 

Not all chameleons, for example, are arboreal, although terrestrial chameleons still 

appear to maintain many of the same morphologies as their arboreal relatives. Key ques-

tions regarding commonalities and divergence between disparate groups of chameleons 

remain, however. As noted by Tolley and Burger (2007), terrestrial chameleons tend to be 

small, and they typically exhibit relatively short tails. How internal morphology relates to a 

terrestrial lifestyle in chameleons remains relatively unknown. 

Further, a great deal of behavioral variation exists between different lineages within the 

family. Many of these behavioral differences may have underlying morphological variations 

associated with them. Behavioral observations of tongue-touch behavior in various species 

(Ogilvie, 1966; Gehring and Lutzmann, 2011; C.V. Anderson, personal observation) suggest 

a need for more in-depth examination of the morphological variation and functionality of 

the vomeronasal organ, for example. 
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Appendix

List of 196 Described Chameleon Species as of 2012, 
with the Broad Region in Which They Occur

(Continued)

Species Region

Archaius tigris (Kuhl, 1820) Seychelles
Bradypodion atromontanum Branch, Tolley, and Tilbury, 2006 Southern Africa
Bradypodion caeruleogula Raw and Brothers, 2008 Southern Africa
Bradypodion caffer (Boettger, 1889) Southern Africa
Bradypodion damaranum (Boulenger, 1887) Southern Africa
Bradypodion dracomontanum Raw, 1976 Southern Africa
Bradypodion gutturale (Smith, 1849) Southern Africa
Bradypodion kentanicum (Hewitt, 1935) Southern Africa
Bradypodion melanocephalum (Gray, 1865) Southern Africa
Bradypodion nemorale Raw, 1978 Southern Africa
Bradypodion ngomeense Tilbury and Tolley, 2009 Southern Africa
Bradypodion occidentale (Hewitt, 1935) Southern Africa
Bradypodion pumilum (Gmelin, 1789) Southern Africa
Bradypodion setaroi Raw, 1976 Southern Africa
Bradypodion taeniabronchum (Smith, 1831) Southern Africa
Bradypodion thamnobates Raw, 1976 Southern Africa
Bradypodion transvaalense (Fitzsimons, 1930) Southern Africa
Bradypodion ventrale (Gray, 1845) Southern Africa
Brookesia ambreensis Raxworthy and Nussbaum, 1995 Madagascar
Brookesia antakarana Raxworthy and Nussbaum, 1995 Madagascar
Brookesia bekolosy Raxworthy and Nussbaum, 1995 Madagascar
Brookesia betschi Brygoo, Blanc, and Domergue, 1974 Madagascar
Brookesia bonsi Ramanantsoa, 1980 Madagascar
Brookesia brygooi Raxworthy and Nussbaum, 1995 Madagascar
Brookesia brunoi Crottini, Miralles, Glaw, Harris, 

Lima, and Vences, 2012
Madagascar

Brookesia confidens Glaw, Köhler, Townsend, and Vences, 2012 Madagascar
Brookesia decaryi Angel, 1939 Madagascar
Brookesia dentata Mocquard, 1900 Madagascar
Brookesia desperata Glaw, Köhler, Townsend, and Vences, 2012 Madagascar
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Species Region

Brookesia ebenaui (Boettger, 1880) Madagascar
Brookesia exarmata Schimmenti and Jesu, 1996 Madagascar
Brookesia griveaudi Brygoo, Blanc, and Domergue, 1974 Madagascar
Brookesia karchei Brygoo, Blanc, and Domergue, 1970 Madagascar
Brookesia lambertoni Brygoo and Domergue, 1970 Madagascar
Brookesia lineata Raxworthy and Nussbaum, 1995 Madagascar
Brookesia lolontany Raxworthy and Nussbaum, 1995 Madagascar
Brookesia micra , 2012 Madagascar
Brookesia minima Boettger, 1893 Madagascar
Brookesia nasus Boulenger, 1887 Madagascar
Brookesia perarmata (Angel, 1933) Madagascar
Brookesia peyrierasi Brygoo and Domergue, 1974 Madagascar
Brookesia ramanantsoai Brygoo and Domergue, 1975 Madagascar
Brookesia stumpffi Boettger, 1894 Madagascar
Brookesia superciliaris (Kuhl, 1820) Madagascar
Brookesia therezieni Brygoo and Domergue, 1970 Madagascar
Brookesia thieli Brygoo and Domergue, 1969 Madagascar
Brookesia tristis Glaw, Köhler, Townsend, and Vences, 2012 Madagascar
Brookesia tuberculata Mocquard, 1894 Madagascar
Brookesia vadoni Brygoo and Domergue, 1968 Madagascar
Brookesia valerieae Raxworthy, 1991 Madagascar
Calumma amber Raxworthy and Nussbaum, 2006 Madagascar
Calumma ambreense (Ramanantsoa, 1974) Madagascar
Calumma andringitraense (Brygoo, Blanc, and Domergue, 1972) Madagascar
Calumma boettgeri (Boulenger, 1888) Madagascar
Calumma brevicorne (Günther, 1879) Madagascar
Calumma capuroni (Brygoo, Blanc, and Domergue, 1972) Madagascar
Calumma crypticum Raxworthy and Nussbaum, 2006 Madagascar
Calumma cucullatum (Gray, 1831) Madagascar
Calumma fallax (Mocquard, 1900) Madagascar
Calumma furcifer (Vaillant and Grandidier, 1880) Madagascar
Calumma gallus (Günther, 1877) Madagascar
Calumma gastrotaenia (Boulenger, 1888) Madagascar
Calumma glawi Böhme, 1997 Madagascar
Calumma globifer (Günther, 1879) Madagascar
Calumma guibei (Hillenius, 1959) Madagascar
Calumma guillaumeti (Brygoo, Blanc, and Domergue, 1974) Madagascar
Calumma hafahafa Raxworthy and Nussbaum, 2006 Madagascar
Calumma hilleniusi (Brygoo, Blanc, and Domergue, 1973) Madagascar
Calumma jejy Raxworthy and Nussbaum, 2006 Madagascar
Calumma linota (Müller, 1924) Madagascar
Calumma malthe (Günther, 1879) Madagascar
Calumma marojezense (Brygoo, Blanc, and Domergue, 1970) Madagascar
Calumma nasutum (Duméril and Bibron, 1836) Madagascar
Calumma oshaughnessyi (Günther, 1881) Madagascar
Calumma parsonii (Cuvier, 1824) Madagascar
Calumma peltierorum Raxworthy and Nussbaum, 2006 Madagascar
Calumma peyrierasi (Brygoo, Blanc, and Domergue, 1974) Madagascar
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(Continued)

Species Region

Calumma tarzan Gehring, Pabijan, Ratsoavina, Köhler, 
Vences, and Glaw, 2010

Madagascar

Calumma tsaratananense (Brygoo and Domergue, 1967) Madagascar
Calumma tsycorne Raxworthy and Nussbaum, 2006 Madagascar
Calumma vatosoa Andreone, Mattioli, Jesu, and  

Randrianirina, 2001
Madagascar

Calumma vencesi Andreone, Mattioli, Jesu, and  
Randrianirina, 2001

Madagascar

Calumma vohibola Gehring, Ratsoavina, Vences, and Glaw, 2011 Madagascar
Chamaeleo africanus Laurenti, 1768 West-central Africa, 

North Africa
Chamaeleo anchietae Bocage, 1872 West-central Africa
Chamaeleo arabicus (Matschie, 1893) Arabia
Chamaeleo calcaricarens Böhme, 1985 North Africa
Chamaeleo calyptratus Duméril & Duméril, 1851 Arabia
Chamaeleo chamaeleon (Linnaeus, 1758) Europe, North 

Africa, Arabia
Chamaeleo dilepis Leach, 1819 Pan Africa
Chamaeleo gracilis Hallowell, 1842 East Africa, 

West-central Africa
Chamaeleo laevigatus (Gray, 1863) East Africa 
Chamaeleo monachus (Gray, 1865) Socotra Island
Chamaeleo namaquensis Smith, 1831 Southern Africa
Chamaeleo necasi Ullenbruch, Krause,  Böhme, 2007 West-central Africa
Chamaeleo senegalensis Daudin, 1802 West-central Africa
Chamaeleo zeylanicus Laurenti, 1768 Asia
Furcifer angeli (Brygoo and Domergue, 1968) Madagascar
Furcifer antimena (Grandidier, 1872) Madagascar
Furcifer balteatus (Duméril and Bibron, 1851) Madagascar
Furcifer belalandaensis (Brygoo and Domergue, 1970) Madagascar
Furcifer bifidus (Brongniart, 1800) Madagascar
Furcifer campani (Grandidier, 1872) Madagascar
Furcifer cephalolepis (Günther, 1880) Comoros
Furcifer labordi (Grandidier, 1872) Madagascar
Furcifer lateralis (Gray, 1831) Madagascar
Furcifer major (Brygoo, 1971) Madagascar
Furcifer minor (Günther, 1879) Madagascar
Furcifer nicosiai Jesu, Mattioli, and Schimmenti, 1999 Madagascar
Furcifer oustaleti (Mocquard, 1894) Madagascar
Furcifer pardalis (Cuvier, 1829) Madagascar
Furcifer petteri (Brygoo and Domergue, 1966) Madagascar
Furcifer polleni (Peters, 1874) Comoros
Furcifer rhinoceratus (Boettger, 1893) Madagascar
Furcifer timoni Glaw, Köhler, and Vences, 2009 Madagascar
Furcifer tuzetae (Brygoo, Bourgat, and Domergue, 1972) Madagascar
Furcifer verrucosus (Cuvier, 1829) Madagascar
Furcifer viridis Florio, Ingram, Rakotondravony, Louis, and  

Raxworthy, 2012
Madagascar
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Species Region

Furcifer willsii (Günther, 1890) Madagascar
Kinyongia adolfifriderici (Sternfeld, 1912) East Africa
Kinyongia asheorum Necas, Sindaco, Korený, Kopecná,  

Malonza, and Modrý, 2009
East Africa

Kinyongia boehmei (Lutzmann and Necas, 2002) East Africa
Kinyongia carpenteri (Parker, 1929) East Africa
Kinyongia excubitor (Barbour, 1911) East Africa
Kinyongia fischeri (Reichenow, 1887) East Africa
Kinyongia gyrolepis Greenbaum, Tolley, Joma, and  

Kusamba, 2012
East Africa

Kinyongia magomberae Menegon, Tolley, Jones,  
Rovero, Marshall, and Tilbury, 2009

East Africa

Kinyongia matschiei (Werner, 1895) East Africa
Kinyongia multituberculata (Nieden, 1913) East Africa
Kinyongia oxyrhina (Klaver and Böhme, 1988) East Africa
Kinyongia tavetana (Steindachner, 1891) East Africa
Kinyongia tenuis (Matschie, 1892) East Africa
Kinyongia uluguruensis (Loveridge, 1957) East Africa
Kinyongia uthmoelleri (Müller, 1938) East Africa
Kinyongia vanheygeni Necas, 2009 East Africa
Kinyongia vosseleri (Nieden, 1913) East Africa
Kinyongia xenorhina (Boulenger, 1901) East Africa
Nadzikambia baylissi Branch and Tolley, 2010 East Africa
Nadzikambia mlanjensis (Broadley, 1965) East Africa
Rhampholeon acuminatus Mariaux and Tilbury, 2006 East Africa
Rhampholeon beraduccii Mariaux and Tilbury, 2006 East Africa
Rhampholeon boulengeri Steindachner, 1911 East Africa
Rhampholeon chapmanorum Tilbury, 1992 East Africa
Rhampholeon gorongosae Broadley, 1971 Southern Africa
Rhampholeon marshalli Boulenger, 1906 Southern Africa
Rhampholeon moyeri Menegon, Salvidio, and Tilbury, 2002 East Africa
Rhampholeon nchisiensis (Loveridge, 1953) East Africa
Rhampholeon platyceps Günther, 1893 East Africa
Rhampholeon spectrum (Buchholz, 1874) West-central Africa
Rhampholeon spinosus (Matschie, 1892) East Africa
Rhampholeon temporalis (Matschie, 1892) East Africa
Rhampholeon uluguruensis Tilbury and Emmrich, 1996 East Africa
Rhampholeon viridis Mariaux and Tilbury, 2006 East Africa
Rieppeleon brachyurus (Günther, 1893) East Africa
Rieppeleon brevicaudatus (Matschie, 1892) East Africa
Rieppeleon kerstenii (Peters, 1868) East Africa, North 

Africa
Trioceros affinis (Rüppel, 1845) North Africa
Trioceros balebicornutus (Tilbury, 1998) North Africa
Trioceros bitaeniatus (Fischer, 1884) East Africa
Trioceros camerunensis (Müller, 1909) West-central Africa
Trioceros chapini (De Witte, 1964) West-central Africa
Trioceros conirostratus (Tilbury, 1998) East Africa
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Species Region

Trioceros cristatus (Stutchbury, 1837) West-central Africa
Trioceros deremensis (Matschie, 1892) East Africa
Trioceros ellioti (Günther, 1895) East Africa
Trioceros feae (Boulenger, 1906) West-central Africa
Trioceros fuelleborni (Tornier, 1900) East Africa
Trioceros goetzei (Tornier, 1899) East Africa
Trioceros hanangensis Krause & Böhme, 2010 East Africa
Trioceros harennae (Largen, 1995) North Africa
Trioceros hoehnelii (Steindachner, 1891) East Africa
Trioceros incornutus (Loveridge, 1932) East Africa
Trioceros ituriensis (Schmidt, 1919) East Africa, Central 

Africa
Trioceros jacksonii (Boulenger, 1896) East Africa
Trioceros johnstoni (Boulenger, 1901) East Africa, Central 

Africa
Trioceros kinangopensis Stipala, Lutzmann, Malonza,  

Wilkinson, Godley, Nyamache, and Evans, 2012
East Africa

Trioceros kinetensis (Schmidt, 1943) East Africa
Trioceros laterispinis (Loveridge, 1932) East Africa
Trioceros marsabitensis (Tilbury, 1991) East Africa
Trioceros melleri (Gray, 1865) East Africa
Trioceros montium (Buchholz, 1874) West-central Africa
Trioceros narraioca (Necas, Modry, and Slapeta, 2003) East Africa
Trioceros ntunte (Necas, Modry, and Slapeta, 2005) East Africa
Trioceros nyirit Stipala, Lutzmann, Malonza, Wilkinson,  

Godley, Nyamache, and Evans, 2011
East Africa

Trioceros oweni (Gray, 1831) West-central Africa
Trioceros perreti (Klaver and Böhme, 1992) West-central Africa
Trioceros pfefferi (Tornier, 1900) West-central Africa
Trioceros quadricornis (Tornier, 1899) West-central Africa
Trioceros rudis (Boulenger, 1906) East Africa
Trioceros schoutedeni (Laurent, 1952) East Africa
Trioceros schubotzi (Sternfeld, 1912) East Africa
Trioceros serratus (Mertens, 1922) West-central Africa
Trioceros sternfeldi (Rand, 1963) East Africa
Trioceros tempeli (Tornier, 1900) East Africa
Trioceros werneri (tornier, 1899) East Africa
Trioceros wiedersheimi (Nieden, 1910) West-central Africa

source: Glaw and Vences, 2007; Tolley and Burger, 2007; Tilbury, 2010; Uetz, 2012.
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AbbreviAtions

asl above sea level

cf. compare

cm centimeters

e.g. for example

i.e. that is

km kilometers

m meters

mm millimeters

Mya million years ago

Myr million years

Ri. Rieppeleon

Rh. Rhampholeon

sp. species (singular)

spp. species (plural)
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